Industrielle Produktion

Bild: ©deagreez/stock.adobe.com
Bild: ©deagreez/stock.adobe.com
Mit KI stockende Lieferketten verbessern

Mit KI stockende Lieferketten verbessern

Lieferketten sind in aller Munde, seitdem sie global häufig nicht mehr reibungslos funktionieren. Die Pandemie war aber nur der Auslöser, denn es gibt zahlreiche Trends, die für stetigen Wandel in der Lieferkette sorgen. Wer den Wandel aktiv mitgestalten möchte, braucht nicht nur Erkenntnisse, sondern die passende IT-Infrastruktur und eine Portion operative künstliche Intelligenz.

mehr lesen
Bild: Leadec Group
Bild: Leadec Group
Stau 
auf der Datenautobahn

Stau auf der Datenautobahn

Für den erfolgreichen Einsatz von künstlicher Intelligenz in der Produktion ist eine solide Datenbasis entscheidend. Je größer die Datenmenge und je höher die Datenqualität, desto besser funktionieren KI-Projekte. Falls die Daten in größeren Produktionsanlagen erfasst werden sollen, muss das Netzwerk dafür entsprechend ausgelegt werden – oder im Falle einer Nachrüstung die dafür notwendige Reserve haben. Im folgenden Artikel wird erläutert, auf welche Parameter es dabei ankommt.

mehr lesen
Bild: Beckhoff Automation GmbH & Co. KG
Bild: Beckhoff Automation GmbH & Co. KG
TwinCat Machine Learning für intelligente Bolzenanker-Produktionslinie

TwinCat Machine Learning für intelligente Bolzenanker-Produktionslinie

Ein auf Befestigungstechnik spezialisiertes, international tätiges Unternehmen produziert u. a. Bolzenanker in verschiedensten Ausführungen. Um hierbei die Umschließungsqualität der zugehörigen metallischen Hülse aus vorhandenen Maschinendaten in Echtzeit zu bestimmen, wurde ein entsprechendes Entwicklungsprojekt als Bachelorarbeit an der Ostschweizer Fachhochschule (OST), Campus Buchs, durchgeführt. Als geeignete Lösung hat sich dabei das maschinelle Lernen (ML) mit TwinCat Machine Learning von Beckhoff erwiesen.

mehr lesen
Bild: Pascal Friederich, Karlsruher Institut für Technologie
Bild: Pascal Friederich, Karlsruher Institut für Technologie
Maschinelles Lernen beschleunigt Materialsimulationen

Maschinelles Lernen beschleunigt Materialsimulationen

Erforschung, Entwicklung und Herstellung neuer Materialien hängen entscheidend von schnellen und zugleich genauen Simulationsmethoden ab. Maschinelles Lernen, bei dem künstliche Intelligenz (KI) selbstständig neues Wissen erwirbt und anwendet, wird es künftig ermöglichen, komplexe Materialsysteme rein virtuell zu entwickeln. Wie das funktioniert und welche Anwendungen davon profitieren, erklärt ein Forscher des Karlsruher Instituts für Technologie (KIT) gemeinsam mit Kollegen aus Göttingen und Toronto.

mehr lesen
Bild: ©Alterfalter/stock.adobe.com / MPDV Mikrolab GmbH
Bild: ©Alterfalter/stock.adobe.com / MPDV Mikrolab GmbH
Manufacturing Analytics und künstliche Intelligenz

Manufacturing Analytics und künstliche Intelligenz

Die Bandbreite an Analyseanwendungen reicht von klassischen Reports und Kennzahlen über Self Service Analytics bis hin zu künstlicher Intelligenz. Bei aller Vielfalt sollte der Zweck nicht aus dem Fokus geraten: transparenter und effizienter fertigen zu können. Zumal immer wieder neue Manufacturing-Analytics-Instrumente entwickelt werden.

mehr lesen
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen
Der digitale Zwilling als Basis für ein intelligentes und skalierbares Produktionssystem

Der digitale Zwilling als Basis für ein intelligentes und skalierbares Produktionssystem

Der digitale Zwilling ist der interdisziplinäre Kern zahlreicher Industrie-4.0-Anwendungen (I4.0). Implementierungsansätze sind allerdings oft noch individuell und kostenintensiv, da nutzbare Standards und Referenzmodelle bisher nicht vorhanden waren. Die Plattform I4.0 hat die Verwaltungsschale als einheitlichen Standard für den digitalen Zwilling eingeführt. Im Rahmen des KI-Innovationswettbewerbs entsteht daher im vom BMWi geförderten Forschungsprojekt IIP-Ecosphere eine Implementierung der Verwaltungsschale in der Sennheiser Future Factory.

mehr lesen
Bild: ©ssguy/shutterstock.com
Bild: ©ssguy/shutterstock.com
Daten vor Ort auswerten, 
autonom reagieren

Daten vor Ort auswerten, autonom reagieren

Mit der Anwendung von künstlicher Intelligenz (KI) in industriellen Applikationen lassen sich immer neue Herausforderungen lösen. Die stetig steigenden Datenmengen, die aus der immer komplexeren Automatisierung resultieren, erfordern Maschinen und Prozesse, die selbständig Erkenntnisse gewinnen und Abläufe anpassen können. Einige Beispiele zeigen, wie derartige Lösungen in verschiedenen Anwendungsgebieten aussehen.

mehr lesen
Bild: TSU - Verein für Technische Sicherheit
Bild: TSU - Verein für Technische Sicherheit
KI-Einsatz 
für Safety-Anwendungen

KI-Einsatz für Safety-Anwendungen

Der Einsatz von künstlicher Intelligenz (KI) in der Fertigung kann Produktqualität, Produktivität und Prozessabläufe verbessern. Bei sicherheitsbezogenen Applikationen im Bereich der DIN/EN61508 hingegen kommen KI-Methoden bislang nicht zum Einsatz. Ein technologisch neuartiges, KI-basiertes Konzept, bei dem anstelle eines konventionellen Logikteils ein künstliches neuronales Netz verwendet wird, könnte das künftig ändern.

mehr lesen
Bild: IBM Deutschland GmbH
Bild: IBM Deutschland GmbH
Kostenreduzierung in der Ersatzteilplanung durch KI-basierte Prognosen

Kostenreduzierung in der Ersatzteilplanung durch KI-basierte Prognosen

Leo Müller ist Planer im Zentrallager eines großen Automobilherstellers. In den letzten Jahren kam es immer wieder zu hohen Inventarüberschüssen im Ersatzteilbereich. Oft lagern am Ende des Lebenszyklus eines Teils noch hohe Bestände im Zentrallager. Diese Bestände haben über Jahre Lagerplatz eingenommen und müssen dann verschrottet werden. Eine große Verschwendung von Ressourcen, Kapital und Lagerplatz. Aber wieso muss es dazu kommen?

mehr lesen

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.