Industrielle Produktion

Bild: SKF GmbH
Bild: SKF GmbH
Automatisiertes maschinelles Lernen eröffnet neue Möglichkeiten

Automatisiertes maschinelles Lernen eröffnet neue Möglichkeiten

SKFs Automated Machine Learning (AutoML)-Angebot SKF Enlight AI wendet selbstlernende Algorithmen auf Echtzeit-Prozessdaten an, um Anomalien zu erkennen und drohende Anlagenstörungen vorherzusagen. Es vereint Maschinenprozessdaten mit Informationen aus dem Schwingungs- und Condition Monitoring. Mit den so gewonnenen Ergebnissen können Wartungsteams rechtzeitig gewarnt und mit allen notwendigen Informationen aus der Maschine versorgt werden. Damit vermeiden Anwender Maschinenausfälle und senken ihre Kosten.

mehr lesen
Bild: ©goodluz/stock.adobe.com
Bild: ©goodluz/stock.adobe.com
Betriebsstörungen in 
der Glaskugel vorhersehen

Betriebsstörungen in der Glaskugel vorhersehen

Produzierende Unternehmen könnten künftig die Analyse-Funktionen ihrer Fertigungssoftware etwa dazu nutzen, Ausschuss und Arbeitsplatzstörungen vorherzusagen, um dies mit den passenden Gegenmaßnahmen zu verhindern. Ein solches KI-getriebenes Predictive-Analytics-System wird gerade in einem praxisnahen Forschungsprojekt weiterentwickelt.

mehr lesen
Bild: Fraunhofer IAO/Foto: Ludmilla Parsyak
Bild: Fraunhofer IAO/Foto: Ludmilla Parsyak
Wie künstliche Intelligenz die Produktionsarbeit der Zukunft verbessert

Wie künstliche Intelligenz die Produktionsarbeit der Zukunft verbessert

In der Produktionsarbeit der Zukunft unterstützen autonome Systeme den Menschen durch datenbasierte Analysen und intelligente Lösungsmuster bei wertschöpfenden Tätigkeiten. Welchen Nutzen künstliche Intelligenz (KI) dabei stiftet, zeigen Expertinnen und Experten der beiden Stuttgarter Fraunhofer-Institute IPA und IAO ihren Gästen beim ‚International Open Lab Day‘ am 16. April 2021.

mehr lesen
Bild: ©Kovalenko I/stock.adobe.com
Bild: ©Kovalenko I/stock.adobe.com
Resiliente Lieferkette
durch Prognosen

Resiliente Lieferkette durch Prognosen

Unvorhergesehene Ereignisse können die Lieferkette beeinträchtigen oder sie sogar
lahmlegen. Da regionale bis globale Entwicklungen darauf hindeuten, dass die Zahl meist unliebsamer Überraschungen eher zunehmen dürfte, steigt auch die Bedeutung der Resilienz einer Lieferkette. Diese Widerstandsfähigkeit lässt sich mit künstlicher Intelligenz stärken.

mehr lesen

Das könnte Sie auch Interessieren

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Bild: Fraunhofer IOSB-INA
Bild: Fraunhofer IOSB-INA
Fraunhofer entwickelt Lösungen für Einsatz künstlicher Intelligenz in industrieller Produktion

Fraunhofer entwickelt Lösungen für Einsatz künstlicher Intelligenz in industrieller Produktion

Wie macht die intelligente Nutzung von Daten Fabriken fit für die Zukunft? Im Projekt ‚Datenfabrik.NRW‘ erarbeiten vier Fraunhofer-Institute (Entwurfstechnik Mechatronik IEM, Materialfluss und Logistik IML, Optronik, Systemtechnik und Bildauswertung IOSB und Intelligente Analyse- und Informationssysteme IAIS) konkrete Anwendungen für den vielfältigen Einsatz von künstlicher Intelligenz in der Produktion und setzen diese in realen Produktionsumgebungen bei Claas und Schmitz Cargobull um. Das Land Nordrhein-Westfalen fördert das Zukunftsprojekt mit 9,2Mio.€. Die Kompetenzplattform KI.NRW nimmt die Datenfabrik.NRW als KI-Flagshipprojekt in ihr Netzwerk auf.

Bild: Arrow Central Europe GmbH
Bild: Arrow Central Europe GmbH
Guardian Technologies gewinnt Innovators Award von Arrow Electronics

Guardian Technologies gewinnt Innovators Award von Arrow Electronics

Das KI-Startup Guardian Technologies aus Wangen im Allgäu ist der diesjährige Gewinner des Innovator Awards von Arrow Electronics. An dem Wettbewerb haben mehr als 50 Technologie-Startups aus Deutschland, Österreich und der Schweiz teilgenommen. Zwölf Unternehmen sind in das Finale eingezogen. Das im Jahr 2020 gegründete Unternehmen Guardian Technologies ist ein Hersteller von kompakten, KI- und Kamera-basierten Systemen, die Brände schnell entdecken und löschen können.