Technologie

High-Speed-Sortierung mit KI und FPGA-Framegrabbern

Eine herausfordernde Anwendung bei der Kunststoffverarbeitung ist die Erkennung von Stippen (punktförmige Materialveränderung) bis zu einer Größe von 50µm. Derzeitige Technologien bieten meist nicht die Kombination aus hoher Bandbreite und geringer Latenz, die Voraussetzung für den benötigten Durchsatz und die gewünschte Sortierqualität sind.

mehr lesen
Bild: Fraunhofer ILT
Bild: Fraunhofer ILT
Künstliche Intelligenz in der Produktion

Künstliche Intelligenz in der Produktion

Auf der zweiten Konferenz ‚AI for Laser Technology‘ wird am 28. und 29. September 2021 der aktuelle Stand bei der Anwendung von künstlicher Intelligenz in der Lasermaterialbearbeitung diskutiert. Zum Austausch treffen sich hier Forschende, Anlagenbauer, Softwareentwickler und Maschinenbauer. Neben den Fachvorträgen werden am Fraunhofer-Institut für Lasertechnik ILT die Labore für virtuelle Rundgänge geöffnet. Aufgrund der aktuellen Regelungen findet die Tagung online statt.

mehr lesen
Bild: KEB Automation KG
Bild: KEB Automation KG
Mit zentraler Datenplattform zu IIoT und KI

Mit zentraler Datenplattform zu IIoT und KI

In der Industrie stehen Schlagworte wie Digitalisierung, Industrial Internet of Things (IIoT) und künstliche
Intelligenz (KI) seit langem für die Möglichkeit, Produktionsabläufe und Wartungsmodelle auf der Basis von Daten zu optimieren. Dadurch ergeben sich für Maschinen- und Komponentenhersteller gleichermaßen Chancen, ihren Kunden neue Angebote für digitale, datenbasierte Services zu machen.

mehr lesen
Bild: ISW Institut für Steuerungstechnik der
Bild: ISW Institut für Steuerungstechnik der
Computer Vision 
in der Steuerung

Computer Vision in der Steuerung

Der Ruf nach intelligenten Lösungen für die Produktionstechnik wird immer größer. Bauteile sollen automatisch erkannt und individuell verarbeitet werden. Dabei spielt Computer Vision eine entscheidende Rolle, jedoch fehlt es noch an Lösungen zur steuerungsnahen Ausführung. Wegen der komplexen Rechenvorgänge ist die Ausführung intelligenter Vision-Algorithmen in einer konventionellen Steuerung meist nicht in Echtzeit möglich. Die Lösung? Eine hardwarebeschleunigte Soft-SPS.

mehr lesen
Bild: Robotron Datenbank-Software GmbH & Wandelbots GmbH
Bild: Robotron Datenbank-Software GmbH & Wandelbots GmbH
Domänenwissen 
schlägt Coding-Skills

Domänenwissen schlägt Coding-Skills

Begrenzte IT-Expertise und Ressourcen, Fachkräftemangel: Die Digitalisierung stellt kleine und mittelständische Unternehmen vor Herausforderungen. Low-Code- und No-Code-Technologien treten an, dieses Dilemma zu lösen. Sie befähigen alle Arbeitskräfte mit Domänenwissen, eigene Anwendungen zu erstellen – ohne große IT-Abteilung dahinter.

mehr lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige