Die Vision Cam Ai.go von Imago Technologies soll Anwendern den einfachen Einstieg in Deep Learning ermöglichen.
Die Vision Cam Ai.go von Imago Technologies soll Anwendern den einfachen Einstieg in Deep Learning ermöglichen.
Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.
Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.
Mit performanten 360-Grad-Systemen hat Luis sich bereits einen Namen gemacht.
Mit VisionPro Deep Learning 2.0 stellt Cognex seine neueste Deep-Learning-basierte Software zur Bildanalyse vor, die speziell für die Fabrikautomatisierung entwickelt wurde. Eine grafische Benutzeroberfläche vereinfacht das Trainieren des neuronalen Netzwerks.
Mit den AX Smart Cameras präsentiert Baumer seine ersten smarten Industriekameras. Diese verbinden Nvidia Jetson Nano bzw. NX Module mit Sony CMOS-Sensoren zu einer frei programmierbaren Bildverarbeitungsplattform für Industrie-4.0- und KI-Anwendungen.
Wenn es um Podiumsplätze geht, sind Millisekunden und Millimeter entscheidend. Diese Feinheiten sollen für Trampolin-Trainer und -Sportler des Deutschen Turner-Bundes (DTB) zukünftig über ein neues Projekt, welches auf einem bildbasierten System von Simi Reality Motion Systems basiert, visualisiert und dokumentiert werden. Für die passenden Videoaufnahmen sorgen Industriekameras von Matrix Vision.
The PerCV.ai Industry 4.0 package of Irida Labs is an end-to-end AI software and services platform that employ computer vision and AI at the edge and run in real time.
Damit Entwickler schneller zu ihren individuellen KI-basierten Embedded-Vision-Lösungen kommen, bieten sich vorkonfigurierte Embedded-Vision-Baukästen an. Congatec hat eine Lösungsplattform zusammen mit Basler auf Basis des NXP i.MX 8 Plus Prozessors entwickelt, der eine integrierte Neural Processing Unit (NPU) hat.
Durch den Einsatz von Self-Organizing Maps (SOMs), einer Art von neuronaler Netze, haben Industrial Analytics Labs und Optimum eine neue Methode entwickelt, um Fehlerzustände zu erkennen, ohne diese vorher gesehen zu haben.
Die KI-Plattformen der Serie DLAP-4000 sind erweiterbare industrielle Box-Computer, die von Acceed kundenspezifisch mit Quadro-Grafikkarten von Nvidia ausgestattet werden.
Um bei anspruchsvollen (Embedded) Vision-Anwendungen ein optimales Ergebnis zu erzielen und um für zukünftige Anforderungen gerüstet zu sein, spielen ein Systemaufbau mit hoher Bandbreite sowie die Unterstützung leistungsfähiger KI-Anwendungen eine wichtige Rolle. Das Embedded Modul TQMx110EB von TQ deckt diese Faktoren vorbildlich ab.
Pleora’s hybrid AI solution integrates ’no code‘ algorithm development and powerful edge processing to help manufacturers deploy advanced inspection.
Die kompakte Neon-2000-JNX von Adlink ist die erste industrielle smarte KI-Kamera mit integriertem Jetson-Xavier-NX-Modul von Nvidia, welches mehr als die 10-fache Leistung seines Vorgängers Jetson TX2 ermöglicht.
SSV bietet aufgabenspezifische Industriesensoren für Machine-Learning-Anwendungen in der Smart Factory mit Hilfe eines modularen Baukastensystems nun auch in der Stückzahl 1 an.
Klassische Bildverarbeitung oder smarte Vision-Sensoren ist in vielen Anwendungen die Gretchenfrage. Es gibt aber noch weitere Aspekte, denn mit klassischer Bildverarbeitung lassen sich viele Anforderungen nicht so umsetzen, dass damit auch preissensitive Applikationen erreichbar sind. Neuronale Netze sowie KI eröffnen hier neue Wege. Hinzu kommt, dass die Anwendungen nicht unbedingt im separaten Rechner ablaufen, der Trend geht in Richtung Embedded Vision und Edge.
In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.
Von der Entwicklung über die Materialbeschaffung, den Produktionsprozess bis zur Nutzung und schlussendlich Entsorgung – wer Produkte nachhaltiger gestalten will, steht vor einer komplexen Aufgabe.
Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.
Mängel im Endprodukt, lange Vorlaufzeiten oder Unterbrechungen in der Lieferkette sind Schmerzpunkte in jeder Qualitätssicherung.
In Zusammenarbeit mit Unternehmen aus dem Automobil- und Technologie-Bereich veranstaltet Idealworks eine weltweite AI-Challenge zum Training künstlicher Intelligenz in der Produktion basierend auf synthetischen Daten aus der BMW iFactory.
In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.
Die Anmeldung für die Everyday AI Conference am 21. Juni in London ist geöffnet.
„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?
Bauteile mobil und in Echtzeit überprüfen – das soll die Software Marquis des Fraunhofer IGD ermöglichen.
Künstliche Intelligenz (KI) und Maschinelles Lernen sind seit Jahren in der industriellen Produktion angekommen. Zumindest theoretisch. Mit welcher Vehemenz KI jetzt in der Praxis Einzug hält, soll sich auf der Automatica zeigen, die vom 21. bis 24. Juni 2022 in München stattfindet.
Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.
Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.