Prozessanomalien frühzeitig erkennen und wirtschaftlich bewerten durch KI-basierte App

Bild: Siemens AG

Siemens stellt die AI Anomaly Assistant Industrie-App vor, die mit Hilfe von künstlicher Intelligenz (KI) Anomalien in der Prozessindustrie erkennt und diese auf ihre Geschäftsrelevanz bewertet. Unternehmen erhalten dadurch neue Möglichkeiten bei der wirtschaftlichen Optimierung ihrer Prozesse. Die App betrachtet Prozessereignisse, die einen Einfluss auf Parameter wie Produktivität, Verfügbarkeit und Qualität haben und weist den Anlagenbetreiber auf solche Anomalien hin. Ereignisse und Anomalien werden nicht mehr nur erkannt, sondern auf ihre Geschäftsrelevanz bewertet – diese Bewertung war bislang nur anhand von Erfahrungswerten möglich.

Damit die KI in der Lage ist, geschäftsrelevante Anomalien zu detektieren und bewerten, werden die Algorithmen anhand von Prozessdaten trainiert (Machine-Learning) und fokussiert, das heißt sie lernen, welche Anomalien eine Auswirkung auf die Wirtschaftlichkeit der Anlage haben. Die weitere Fokussierung der KI wird durch den Anlagenbetreiber selbst vorgegeben. Dazu bietet die App ein Dashboard, in dem Anomalien selektiert, bewertet und kommentiert werden können. Diese Evaluierungsphase wird von mehreren Feedbackschleifen begleitet, sodass der Anlagenbetreiber am Ende eine gut trainierte und fokussierte KI erhält, die in der Lage ist, anhand der Prozessdaten Anomalien auf ihre geschäftliche Relevanz zu bewerten. Die AI Anomaly Assistant App wird entweder als Cloudanwendung oder innerhalb der anwendereigenen Infrastruktur installiert, z.B. auf einem Simatic Box PC oder einer virtuellen Maschine. Die cloudbasierte Lösung ist insbesondere während der Trainings- und Evaluierungsphase vorteilhaft, da sie die effiziente Zusammenarbeit zwischen Datenanalysten und Anlagenbetreiber unterstützt. Zusätzlich ermöglicht sie es auch, die Ergebnisse der Anomalieerkennung mit weiteren Services zu verbinden, etwa einem vorausschauenden Assetmanagement, als Teil der Asset Performance Suite (APS).

Das könnte Sie auch Interessieren

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.