ind-ai.net 4 2021

Bild: Bundesministerium für Wirtschaft und Energie, eigene Berechnung auf Basis von Textkernel-Daten, 2020
Bild: Bundesministerium für Wirtschaft und Energie, eigene Berechnung auf Basis von Textkernel-Daten, 2020
Mint-Studium und Berufserfahrung besonders gefragt bei deutschen KI-Arbeitgebern

Mint-Studium und Berufserfahrung besonders gefragt bei deutschen KI-Arbeitgebern

Wer im Bereich der ku?nstlichen Intelligenz (KI) arbeiten mo?chte, sollte vielseitig einsetzbare Fa?higkeiten aus Mint-Fachrichtungen wie Informatik, Mathematik oder Wirtschaftsinformatik mitbringen.

mehr lesen
Bild: VDI/VDE-IT
Bild: VDI/VDE-IT
Energiesparsamer KI-Chip gewinnt Innovationswettbewerb

Energiesparsamer KI-Chip gewinnt Innovationswettbewerb

„Welcher Chip schafft es, in EKG-Daten Herzrhythmusstörungen und Vorhofflimmern mit mindestens 90 Prozent Genauigkeit zu erkennen und dabei am wenigsten Energie zu verbrauchen?“ So lautet die Aufgabe des Pilotinnovationswettbewerbs ‚Energieeffiziente KI-Systeme‘ des Bundesfor schungsministeriums (BMBF). Die Sieger wurden von Bundesforschungsministerin Anja Karliczek ausgezeichnet – mit dabei das Fraunhofer-Institut für Integrierte Schaltungen IIS gemeinsam mit der Friedrich-Alexander-Universität Erlangen-Nürnberg.

mehr lesen
Bild: ©peshkova/stock.adobe.com
Bild: ©peshkova/stock.adobe.com
Toyota und Siemens kooperieren bei digitaler Transformation für Druckguss

Toyota und Siemens kooperieren bei digitaler Transformation für Druckguss

Um ihr Ziel der Herstellung von Qualitätsteilen zu unterstützen, haben die Toyota Industries Corporation und Siemens gemeinsam eine künstliche Intelligenz (KI) entwickelt, die Produktanomalien im Aluminiumdruckguss, einem Schlüsselprozess in der Produktion von Klimakompressoren für die Automobilindustrie, vorhersagen kann.

mehr lesen
Bild: ©Andrey Popov/stock.adobe.com
Bild: ©Andrey Popov/stock.adobe.com
Mit künstlicher Intelligenz Lebensmittelverschwendung reduzieren

Mit künstlicher Intelligenz Lebensmittelverschwendung reduzieren

In Deutschland landen jedes Jahr rund zwölf Millionen Tonnen Lebensmittel im Abfall. Mehr als 30 Prozent davon werden bereits während des Herstellungsprozesses vernichtet. Im Projekt Reif setzt sich das Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV gemeinsam mit Partnern gegen diese Lebensmittelverschwendung ein. Mit künstlicher Intelligenz sollen die Verluste gesenkt werden. Denn auch Käse, Brötchen, Fleisch und Co. lassen sich mit datenbasierten Algorithmen effizienter herstellen, Absatz- und Produktionsplanung, Prozess- und Anlagensteuerung können mit Methoden des Maschinellen Lernens optimiert werden.

mehr lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige