Künstliche Intelligenz for rent

Um künstliche Intelligenz nutzen zu können, braucht ein Unternehmen nicht zwingend einen ausgewiesenen Fachmann. Eine Fraunhofer-Studie zeigt, wie kleine und mittlere Unternehmen stattdessen vorgehen können.
Bild: Fraunhofer-Gesellschaft

Künstliche Intelligenz (KI) hilft dabei, Produktionsabläufe zu optimieren und so Geld zu sparen. Kleinen und mittleren Unternehmen fehlt allerdings oft die Expertise, um diese Zukunftstechnologie zu nutzen. Sie können zwar die nötigen Daten sammeln, scheitern jedoch an deren Analyse. Hier helfen große Cloud-Anbieter. Sie bieten einfache digitale Werkzeuge, die große Datensätze verarbeiten und KI-Lösungen liefern. Experten sprechen von ‚Machine-Learning-as-a-Service-Plattformen‘. So kann jedes Unternehmen ohne große Erfahrung in die künstliche Intelligenz einsteigen und sich Modelle entwickeln lassen, die etwa fehlerhafte Werkstücke automatisch erkennen.

Gängigste Anwendungsfälle auf vier Plattformen im Vergleich

Aber welche Plattform ist für welche Aufgabe geeignet? Die Stuttgarter Fraunhofer-Institute für Produktionstechnik und Automatisierung IPA und für Arbeitswirtschaft und Organisation IAO haben die Ansätze der vier größten Anbieter – AWS, Google, IBM und Microsoft – verglichen. Sie setzten Lösungen für vier Anwendungsfälle um, die in

der Praxis häufig vorkommen und vier Kategorien von Daten umfassen: Tabellarische Daten, Text-, Bild- und Zeitreihendaten:

• Kundenabwanderung: Für Hotels ist es vorteilhaft, frühzeitig zu wissen, bei welchen Gästen eine Stornierung droht. Möglicherweise steckt in den tabellarischen Buchungsdaten bereits ein Hinweis. KI kann ihn aufspüren und einen entsprechenden Algorithmus entwickeln.

• Textkategorisierung: Texte können verschiedenen Sparten zugewiesen werden, etwa Kultur, Sport und Politik. So kann z.B. eine Presseagentur automatisch ein Archiv pflegen.

• Bilderkennung: Bei der Produktion spielt die Bildanalyse eine wichtige Rolle. So lassen sich mit Kamerasystemen Defekte auf dem Werkstück feststellen. KI hilft dabei, diese Kontrolle zu automatisieren. Aus einer Vielzahl mit Metadaten versehener, sogenannter annotierter Bilder lernt die KI, Fehler zu erkennen.

• Werkzeugabnutzung: Einen Fräskopf zum richtigen Zeitpunkt auszutauschen, spart Geld. Wer zu früh eingreift, verschenkt Material, wer zu spät eingreift, riskiert einen langen Stillstand der Produktion. KI lernt, die Zeitreihendaten von Vibrationen und Stromverbrauch zu deuten, um den Zustand des Fräskopfs richtig abzuschätzen.

Ergebnisse

Die Fraunhofer-Studie hat ergeben, dass die Lösungen aller Anbieter Stärken aufzeigen und kein tiefes Fachwissen voraussetzen. Natürlich gibt es den einen oder anderen Unterschied. So lassen sich manche Plattformen intuitiver bedienen als andere. Auch laufen manche KI-Modelle nur auf der Cloud des Anbieters, andere können auch exportiert und auf unternehmenseigenen Servern installiert werden. Welche Plattform für welchen Anwendungsfall empfohlen werden kann, wird in der Studie ‚Cloudbasierte KI-Plattformen – Chancen und Grenzen von Diensten für Machine Learning as a Service‘ dargestellt.

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.