KI fit machen für sicherheitskritische Anwendungen

Bild: Fraunhofer-Gesellschaft

Produktionsplanung, Logistik, Wartung, Qualitätskontrolle – in der industriellen Fertigung gibt es viele Einsatzgebiete für künstliche Intelligenz. In der Praxis werden KI-Modelle bisher allerdings noch wenig genutzt. Der Grund: Die Zuverlässigkeit ist schwer prüfbar. Das IPA-Team am Zentrum für Cyber Cognitive Intelligence hat dafür jetzt eine Strategie mit Zertifizierungs-Kriterien vorgeschlagen und über den Stand der entsprechenden Technik in dem White Paper ‚Zuverlässige KI – KI in sicherheitskritischen industriellen Anwendungen einsetzen‘ berichtet: Die Strategie basiert auf Zertifizierbarkeit und Transparenz.

Das Ergebnis dieser Recherche sind fünf Kriterien, die KI-Systeme erfüllen sollen, um als sicher zu gelten:

  • Alle Entscheidungen der Algorithmen müssen für Menschen verständlich sein.
  • Die Funktion der Algorithmen muss vor ihrem Einsatz mit Methoden der Formalen Verifikation geprüft werden.
  • Darüber hinaus ist eine statistische Validierung notwendig, besonders wenn die Formale Verifikation wegen Skalierbarkeit für den bestimmten Anwendungsfall nicht nutzbar ist. Dies kann durch Testläufe mit größeren Datenmengen bzw. Stückzahlen überprüft werden.
  • Auch die Unsicherheiten, die den Entscheidungen Neuronaler Netze zu Grunde liegen, müssen ermittelt und quantifiziert werden.

Während des Betriebs müssen die Systeme permanent überprüft werden, z.B. durch Online-Monitoring. Wichtig ist dabei die Erfassung von Input und Output – also von Sensordaten und den aus deren Auswertung resultierenden Entscheidungen.

Transparenz schafft Vertrauen

Die zweite Grundvoraussetzung für einen sicheren Einsatz der KI-Systeme ist deren Transparenz. Diese ist gemäß den ethischen Richtlinien der ‚High-Level Expert Group on Artificial Intelligence‘ der Europäischen Kommission, kurz HLEG AI, eines der Schlüsselelemente für die Realisierung einer vertrauenswürdigen KI. Diese Transparenz bezieht sich, anders als die Kriterien, mit denen die Zuverlässigkeit in der algorithmischen Ebene geprüft werden kann, ausschließlich auf die Interaktion mit dem Menschen in der systematischen Ebene. Drei Punkte sind dafür aufgrund der Richtlinien der HLEG AI zusammengefasst, die transparente KI erfüllen muss: Erstens müssen die von den Algorithmen gefällten Entscheidungen nachvollziehbar sein. Zweitens muss es für Menschen auf einer umfassenden Ebene des menschlichen Verständnisses möglich sein, die Entscheidungen zu erklären. Und drittens müssen KI-Systeme mit dem Menschen kommunizieren und ihn informieren, welche Fähigkeiten die Algorithmen haben und wo sie an Grenzen stoßen.

Thematik: Newsarchiv
| News
Fraunhofer - Institut IPA

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige