Die Vision Cam Ai.go von Imago Technologies soll Anwendern den einfachen Einstieg in Deep Learning ermöglichen.
Die Vision Cam Ai.go von Imago Technologies soll Anwendern den einfachen Einstieg in Deep Learning ermöglichen.
Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.
Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.
Mit dem Inspektionssystem VT-S10 3D-AOI bietet Omron ein bildgebendes Verfahren in Kombination mit künstlicher Intelligenz an. Dadurch sollen die Anforderungen an die Fachkenntnisse für präzise Inspektionen verringert werden, denn diese Lösung erfordere weniger Qualifizierung und führe dabei zu einer verbesserten Hochpräzisionsprüfung.
Mit performanten 360-Grad-Systemen hat Luis sich bereits einen Namen gemacht.
Mit VisionPro Deep Learning 2.0 stellt Cognex seine neueste Deep-Learning-basierte Software zur Bildanalyse vor, die speziell für die Fabrikautomatisierung entwickelt wurde. Eine grafische Benutzeroberfläche vereinfacht das Trainieren des neuronalen Netzwerks.
Mit den AX Smart Cameras präsentiert Baumer seine ersten smarten Industriekameras. Diese verbinden Nvidia Jetson Nano bzw. NX Module mit Sony CMOS-Sensoren zu einer frei programmierbaren Bildverarbeitungsplattform für Industrie-4.0- und KI-Anwendungen.
Wenn es um Podiumsplätze geht, sind Millisekunden und Millimeter entscheidend. Diese Feinheiten sollen für Trampolin-Trainer und -Sportler des Deutschen Turner-Bundes (DTB) zukünftig über ein neues Projekt, welches auf einem bildbasierten System von Simi Reality Motion Systems basiert, visualisiert und dokumentiert werden. Für die passenden Videoaufnahmen sorgen Industriekameras von Matrix Vision.
The PerCV.ai Industry 4.0 package of Irida Labs is an end-to-end AI software and services platform that employ computer vision and AI at the edge and run in real time.
Damit Entwickler schneller zu ihren individuellen KI-basierten Embedded-Vision-Lösungen kommen, bieten sich vorkonfigurierte Embedded-Vision-Baukästen an. Congatec hat eine Lösungsplattform zusammen mit Basler auf Basis des NXP i.MX 8 Plus Prozessors entwickelt, der eine integrierte Neural Processing Unit (NPU) hat.
Durch den Einsatz von Self-Organizing Maps (SOMs), einer Art von neuronaler Netze, haben Industrial Analytics Labs und Optimum eine neue Methode entwickelt, um Fehlerzustände zu erkennen, ohne diese vorher gesehen zu haben.
Die KI-Plattformen der Serie DLAP-4000 sind erweiterbare industrielle Box-Computer, die von Acceed kundenspezifisch mit Quadro-Grafikkarten von Nvidia ausgestattet werden.
Um bei anspruchsvollen (Embedded) Vision-Anwendungen ein optimales Ergebnis zu erzielen und um für zukünftige Anforderungen gerüstet zu sein, spielen ein Systemaufbau mit hoher Bandbreite sowie die Unterstützung leistungsfähiger KI-Anwendungen eine wichtige Rolle. Das Embedded Modul TQMx110EB von TQ deckt diese Faktoren vorbildlich ab.
The new Version 5.1. of the machine vision software Adaptive Vision is packed with new features, including Deep Learning OCR, automatic model training, EtherNet/IP protocol support as well as program breakpoints.
With the AX Smart Cameras, Baumer presents its first industrial smart cameras.
The new Iris GTX smart cameras of Matrox Imaging has an Intel Atom x6000 series embedded processor for machine vision operations as well as deep learning inference in the form of image classification and segmentation via the on-device software, Matrox Design Assistant X. The vision operations in the Matrox Imaging software see a three-fold performance boost compared to the precusor Matrox Iris GTR.
Die Anmeldung für die Everyday AI Conference am 21. Juni in London ist geöffnet.
„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?
Bauteile mobil und in Echtzeit überprüfen – das soll die Software Marquis des Fraunhofer IGD ermöglichen.
Künstliche Intelligenz (KI) und Maschinelles Lernen sind seit Jahren in der industriellen Produktion angekommen. Zumindest theoretisch. Mit welcher Vehemenz KI jetzt in der Praxis Einzug hält, soll sich auf der Automatica zeigen, die vom 21. bis 24. Juni 2022 in München stattfindet.
Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.
Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.
GreyOrange gibt die Ergebnisse einer gemeinsam mit der Bundesvereinigung Logistik (BVL) durchgeführten Studie zum Thema „Künstliche Intelligenz und Automatisierungstechnologien in der Intralogistik“ bekannt.
Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.
Mit einer Online-Veranstaltung am 15. Dezember 2021 eröffnet das KI-Förderprojekt IIP-Ecosphere an der Leibniz Universität Hannover ein Experimentierfeld für produktionsbezogene KI-Technologien. Unternehmen und weitere Interessierte sind eingeladen, sich über das Angebot zu informieren.
Lieferketten sind in aller Munde, seitdem sie global häufig nicht mehr reibungslos funktionieren. Die Pandemie war aber nur der Auslöser, denn es gibt zahlreiche Trends, die für stetigen Wandel in der Lieferkette sorgen. Wer den Wandel aktiv mitgestalten möchte, braucht nicht nur Erkenntnisse, sondern die passende IT-Infrastruktur und eine Portion operative künstliche Intelligenz.
Wie macht die intelligente Nutzung von Daten Fabriken fit für die Zukunft? Im Projekt ‚Datenfabrik.NRW‘ erarbeiten vier Fraunhofer-Institute (Entwurfstechnik Mechatronik IEM, Materialfluss und Logistik IML, Optronik, Systemtechnik und Bildauswertung IOSB und Intelligente Analyse- und Informationssysteme IAIS) konkrete Anwendungen für den vielfältigen Einsatz von künstlicher Intelligenz in der Produktion und setzen diese in realen Produktionsumgebungen bei Claas und Schmitz Cargobull um. Das Land Nordrhein-Westfalen fördert das Zukunftsprojekt mit 9,2Mio.€. Die Kompetenzplattform KI.NRW nimmt die Datenfabrik.NRW als KI-Flagshipprojekt in ihr Netzwerk auf.
Das Zentrum für Kunst und Medien Karlsruhe (ZKM) verschiebt die Eröffnung der Ausstellung ‚BioMedien.
Anzeige
Anzeige
Anzeige