Radarsensoren für das sichere autonome Fahren

KI für mehr Durchblick

Radarsensoren für das sichere autonome Fahren

Bild: DFKI GmbH

In den nächsten beiden Jahren werden die Astyx GmbH, die BIT Technology Solutions GmbH und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) ein automobiles Radarsystem für den Einsatz beim hochautomatisierten und autonomen Fahren realisieren. Das Konsortium möchte damit die Qualität der Messdaten des sogenannten Dauerstrichradars signifikant erhöhen. Bei dieser Radartechnologie werden während der Messung ununterbrochen Radarsignale ausgestrahlt und die Reflektionen gemessen.

In der Automobilindustrie sind Radarsensoren bereits stark verbreitet. Der große Vorteil gegenüber kamerabasierten Verfahren oder Laser-Sensoren (Lidar) ist die direkte Messung der Objektgeschwindigkeit und die Robustheit vor Wettereinflüssen wie Nebel oder Schnee. Nachteile sind mögliche Fehler bei der Signalverarbeitung. Diese können durch Geschwindigkeitsmehrdeutigkeiten oder die sogenannte Mehrwegeausbreitung – beispielsweise aufgrund der reflektierenden Straßenoberfläche – entstehen. Bei automatisierten oder autonomen Fahrfunktionen ist jedoch eine sehr hohe Genauigkeit und Robustheit zwingend erforderlich. Im Projekt sollen die physikalisch bedingten Nachteile von Radarsensoren durch innovative KI-Methoden erkannt und beseitigt werden.

Hochauflösende Radargeräte und Software-gestützte Objekterkennung

Astyx steuert neben den hochauflösenden Radargeräten auch das Spezialistenwissen in der Software-gestützten Objekterkennung bei. Dieses Knowhow in den Bereichen 3D-Objekterkennung aus Radarpunktwolken und Deep Learning-basierter Objekterkennung soll genutzt werden, um die KI-basierte Punktwolkenextraktion aus den Radarrohdaten zu verbessern. Außerdem entwickelt Astyx die synchronisierte Datenaufzeichnung, die geometrische Kalibrierung der Sensoren und die Entwicklung der Datenschnittstellen und Werkzeuge zum Annotieren der realen Trainings- und Testdaten.

Simulation der Radarsensordaten

BIT Technology Solutions entwickelt eine synthetische, physikalisch basierende Simulation der Radarsensordaten sowie die benötigten Referenzdaten (Ground Truth). Diese Simulationsumgebung dient als Basis für ein skalierbares und effizientes Training der KI und das qualitative Absichern der KI-Algorithmen. Das Konzept von BIT Technology Solution ermöglicht die Forschung im Bereich der Simulation des gesamten Spektrums elektromagnetischer Wellen und die anschließende Generierung entsprechender synthetischer Daten für Training und Validierung. Durch Kombination von simulierten und realen Radarmessdaten wird die Genauigkeit und Robustheit der KI-Methoden bei der Bereinigung der Messdaten und damit auch die darauf aufbauenden Umfelderkennung eines autonomen Fahrzeugs erheblich verbessert.

DFKI GmbH
www.dfki.de

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.