KI: Zieht der deutsche Mittelstand mit?

Künstliche Intelligenz (KI) kommt schon in den unterschiedlichsten Bereichen zum Einsatz.
Relevanz der KI in Abhängigkeit vom digitalen Reifegrad der Organisation
Relevanz der KI in Abhängigkeit vom digitalen Reifegrad der OrganisationBild: Deloitte GmbH Wirtschaftsprüfungsgesellschaft

Künstliche Intelligenz (KI) kommt schon in den unterschiedlichsten Bereichen zum Einsatz. Der deutsche Mittelstand scheint KI-Technologien hingegen noch verhalten gegenüberzustehen – das zeigt die aktuelle Studie ‚Künstliche Intelligenz im Mittelstand‘, für die Deloitte über 300 Führungskräfte mittelständischer Unternehmen zu den Herausforderungen, Chancen und Risiken von KI im Mittelstand befragt hat. 64% messen KI eine lediglich mittlere bis niedrige Relevanz für den Mittelstand als Ganzes bei. Auch in Bezug auf das eigene Geschäftsmodell sprechen ihr 58% eine niedrige Bedeutung zu. Werfen die Befragten den Blick in die Zukunft, ändert sich das Meinungsbild: 59% sind davon überzeugt, dass die Bedeutung von KI zunehmen wird.

KI-Technologien stehen reihenweise bereit – doch welche haben für den Mittelstand die größte Bedeutung? 45% der Befragten sehen regelbasierte Systeme in Sachen Relevanz an erster Stelle, gefolgt von Machine Learning (41%) und Deep Learning (36%). Diese Priorisierung deckt sich mit den Potenzialen, die sich die Unternehmen vom KI-Einsatz am ehesten versprechen: nämlich der Automatisierung von Prozessen (77%), der effizienten Nutzung von Daten (72%) und der Beschleunigung von Prozessen (66%). Lediglich 43% erhoffen sich von KI die Entwicklung neuer Geschäftsmodelle. Entsprechend gering fällt mit 26% auch der Anteil der Unternehmen aus, die Anwendungen selbst entwickeln – 34% der Befragten nutzen KI als Produkt, 30% als Service.

Geht es um die idealen KI-Einsatzgebiete im Unternehmen, nennt eine Mehrheit von 65% den IT-Bereich als prädestinierte Abteilung. Auch in der Logistik (59%) und in der Material- und Produktionswirtschaft (52%) machen die Teilnehmenden hohe Potenziale für den Gebrauch aus. Überraschend: Gerade solche Bereiche, in denen sich durch etablierte KI-Technologien vergleichsweise rasche und unkompliziert realisierbare Effizienzsteigerungen erzielen lassen – etwa im Controlling oder Rechnungswesen – stufen die meisten Befragten als deutlich weniger KI-geeignet ein.

Die ambivalente Haltung des Mittelstands zu KI spiegelt sich auch in dessen Einschätzungen zu möglichen Anwendungsrisiken wider: Ganze 47% der Unternehmen fürchten falsche Rahmenbedingungen für deren Einsatz – wie etwa ungenügende Datenqualität oder auch einfach fehlende Daten. 45% haben Bedenken, dass Aufwand und Ertrag nicht zusammenpassen. Weitere 44% sehen das Risiko intransparenter Entscheidungen oder Entscheidungswege.

Hakt es im Rahmen der Integration von KI, sieht der Großteil der befragten Führungskräfte die Ursachen zunächst im eigenen Haus: 65% führen Hemmnisse auf interne Kompetenzmängel zurück, 52% verweisen auf allgemeine Probleme der Strategieimplementierung und ebenfalls 52% auf Datenprobleme. Als weitere Barriere geben 46% Mängel in der IT-Infrastruktur an. Passend zu diesen Befunden sehen die Befragten beim Thema Nachholbedarf auch die eigene Belegschaft in der Pflicht: 54% wollen ihre Mitarbeiterinnen und Mitarbeiter in internen Schulungen fit für KI machen, 50% setzen auf erfolgreiche Pilotprojekte. 47% möchten ihren Nachholbedarf durch den Einsatz externer Kompetenzen decken.

Wer hat im Unternehmen den KI-Hut auf? Bei knapp über der Hälfte der Teilnehmenden ist die organisatorische Verantwortung derzeit bei Abteilungen unterhalb der Geschäftsleitung angesiedelt, beispielsweise bei der IT oder den operativen Bereichen, die KI direkt anwenden (jeweils 16%). Eine eigene KI-Abteilung kann nur 1% der Befragten vorweisen. 48% hingegen verorten die Verantwortung bereits beim Top-Management.

Eine ähnliche Zweiteilung lässt sich auch beim Thema Budget ablesen: Zwar beträgt bei der gesamten Stichprobe der Median für KI-Investitionen rund 250.000 Euro pro Jahr. Allerdings investieren 41% sogar 500.000 Euro und mehr, während 48% der Unternehmen unterhalb des Medians bleiben. Bei 11% liegt das KI-Finanzvolumen sogar bei unter 50.000 Euro jährlich. Immerhin: 38% der Befragten rechnen mit einem starken bzw. sehr starken Anstieg der KI-Budgets für die Zukunft.

Deloitte GmbH Wirtschaftsprüfungsgesellschaft

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige