KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie 'The AI Powered Enterprise: Unlocking the potential of AI at scale', für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.
Bild: Capgemini Germany

Erfolgreich eingeführte und skalierbare KI-Anwendungen liefern greifbare Ergebnisse: Laut der aktuellen Studie des Capgemini Research Institute verzeichnen 79 Prozent der Vorreiter, die über skalierbare KI-Lösungen verfügen, einen Anstieg von mindestens 25 Prozent beim Vertrieb von Produkten und Services. 62 Prozent von ihnen konnten zudem die Anzahl an Kundenbeschwerden um mindestens 25 Prozent reduzieren, 71 Prozent gelang dies bezüglich der Sicherheitsrisiken. Von den deutschen Unternehmen konnten 45 Prozent (global: 35 Prozent) ihre Vertriebsaktivitäten derart steigern und 49 Prozent (global: 39 Prozent) ihre Sicherheitsrisiken minimieren. Insgesamt gehören 13 Prozent (Deutschland: 16 Prozent) der befragten Unternehmen zu den Vorreitern, die KI-Anwendungen skalieren können und bereits mehrere KI-Anwendungen erfolgreich in unterschiedlichen Teams eingeführt haben. Dem gegenüber zählen 72 Prozent zu den „Nachzüglern“, die noch keines ihrer vor 2019 gestarteten KI-Pilotprojekte in eine produktive Anwendung überführen konnten. Im Vergleich zur Studie von 2017 haben aktuell 53 statt 36 Prozent der Unternehmen mindestens die Pilotphase ihrer KI-Projekte abgeschlossen.

Branchen reagieren hinsichtlich ihrer KI-Investitionen unterschiedlich auf Corona

Beim KI-Einsatz führend ist die Life-Science-Industrie, 27 Prozent der Unternehmen nutzen bereits verschiedene Anwendungen erfolgreich. Die Branche investiert 17 Prozent ihres Umsatzes in Forschung und Entwicklung und im aktuellen Kontext sind virtuelle Assistenten, Chatbots und Corona-Warn-Apps im eHealth-Segment gefragt. So setzt die Weltgesundheitsorganisation (WHO) auf KI-basierte Anwendungen, um Infomationen zur Pandemie zu sammeln und weiterzugeben. An zweiter Stelle steht der Handel mit 21 Prozent Vorreitern, gefolgt von der Automobilbranche und den Konsumgüterherstellern (jeweils 17 Prozent) und den Telekommunikationsanbietern (14 Prozent). Aufgrund der Corona-Pandemie haben zudem nur 38 Prozent aller Life-Science-Unternehmen ihre Investitionen in KI reduziert oder ganz eingestellt, während dies bei Versicherern (66 Prozent), im Bankensektor (64 Prozent) und den Energieunternehmen (64 Prozent) weitaus häufiger der Fall war. In der Automobilbranche und im Public Sector haben jeweils 49 Prozent ihre Bemühungen zurückgefahren.

Vertrauenswürdige und qualitativ hochwertige Daten entscheidend um KI zu skalieren

Für KI-Vorreiter ist die Verbesserung der Datenqualität der wichtigste Ansatz, um zusätzliche Vorteile aus dem eigenen KI-System zu ziehen. Eine effektive Datenverwaltung sorgt demnach für die nötige Datenqualität und stellt sicher, dass Führungskräfte den Daten vertrauen. Notwendige Technologieplattformen wie hybride Cloud-Architekturen und ein gleichberechtigter Datenzugriff sind Grundlage dafür, KI umfassend einzusetzen.

KI-Experten maßgeblich um Unternehmensziele zu erreichen

Für 70 Prozent der befragten Organisationen stellt der Mangel an Talenten auf mittlerem und hohem Erfahrungslevel eine wesentliche Herausforderung für die Skalierbarkeit von Künstlicher Intelligenz dar. So haben 58 Prozent der KI-Vorreiter einen KI-Leiter ernannt, der Richtlinien zur Priorisierung der Einsatzszenarios sowie hinsichtlich ethischer und sicherheitsrelevanter Aspekte etabliert. Weiterhin vermittelt sie dem Entwicklerteam die übergeordneten Ziele und harmonisiert die bei der KI-Entwicklung zum Einsatz kommenden Plattformen und Werkzeuge. Unternehmen sollten zudem die nötigen Fähigkeiten für den umfassenden KI-Einsatz vermitteln und über Trainings und Weiterbildung sicherstellen, dass diese intern vorhanden sind. Für skalierbare KI-Anwendungen sind neben den technischen Fähigkeiten zudem Qualifikationen von Business-Analysten und Change-Management-Experten gefragt.

Seiten: 1 2Auf einer Seite lesen

Capgemini Germany

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige