Spritzgießen 4.0: KI in der Kunststoffverarbeitung

Fraunhofer Spin-off Plus10 implementiert bei Freudenberg Home and Cleaning Solutions KI-Software in Spritzgießmaschinen und baut hochfrequente Datenerfassung sowie -Verarbeitung auf.
In der Vileda Eimer-Produktion wurde vom Fraunhofer Spin-Off plus10 eine hochfrequente KI-Datenerfassung sowie – Verarbeitung aufgebaut. 
Fotograph: Johannes Vogt.
In der Vileda Eimer-Produktion wurde vom Fraunhofer Spin-Off plus10 eine hochfrequente KI-Datenerfassung sowie -Verarbeitung aufgebaut. – Bild: Freudenberg Home and Cleaning Solutions

Künstliche Intelligenz (KI), Machine Learning (ML), Big Data – diese Begriffe begleiten nun schon seit längerer Zeit die Industrie. Zahlreiche Unternehmen möchten diese Technologien einsetzen. Doch es mangelt an Anwendungsfällen, die einen realistischen Einsatz von künstlicher Intelligenz darstellen und einen konkreten Benefit in der Produktion beschreiben. Denn das Feld ist weit, in dem KI zum Einsatz kommen kann. Plus10, ein Fraunhofer Spin-off, nutzt bei seinen Softwaretools KI-Technologien, um komplexe Produktionsmaschinen maximal produktiv zu betreiben. Die Optimierungssoftware kam in der Konsumgüterherstellung zum Einsatz: Bei Freudenberg Home and Cleaning Solutions wurde eine hochfrequente Datenerfassung und -Verarbeitung bei mehreren Spritzgießmaschinen implementiert.

Software generiert datenbasiert Optimierungsvorschläge

Für Betreiber von Spritzgießmaschinen ist es essenziell, schnellstmöglich perfekt aufeinander abgestimmte Parametereinstellungen zu identifizieren, um das Maximum an Gutteilen in der bestmöglichen Zykluszeit zu erreichen. Allerdings sind vollautomatisierte Produktionsanlagen meist sehr komplex und schwierig maximal produktiv zu betreiben. Für solche Produktionsanlagen entwickelt das KI-Startup Plus10 selbstlernende Softwaretools zur datenbasierten Analyse und Optimierung. Als Basis für das kontinuierlich wirkende System werden tausende Maschinenparameter jede Millisekunde erfasst und verarbeitet. Mittels Machine Learning wird das Maschinenverhalten vieler gleicher oder ähnlicher Maschinen detailliert erlernt. Daraus werden anschließend automatisiert Optimierungsvorschläge für jede einzelne Maschine abgeleitet. Dies basiert im Hintergrund auf einer maschinell gelernten rein virtuellen ‚idealen Maschine‘, die sich über die Zeit hinweg ebenfalls selbst verbessert. Auf diese Weise können Unternehmen ihre Zykluszeit pro Maschine um 6 – 18 Prozent reduzieren.

KI in der Produktion von Eimern bei Freudenberg

Beim Kunststoffverarbeiter Freudenberg Home and Cleaning Solutions war das Ziel des Projekts die Konzeption und Umsetzung einer hochfrequenten Big-Data-Infrastruktur inklusive Data-Mapping für Spritzgießmaschinen. Um diese Zielsetzung zu erreichen, wurde eine Reihe von Maßnahmen realisiert. Als erster Schritt wurden zu jeder Maschinensteuerung mehrere Datenschnittstellen implementiert. Auf diese Weise können Daten von Sensoren zur Rohmaterialcharakterisierung angebunden und gemappt werden. Um auch Temperatur und Feuchtigkeit des Materials zu erfassen, wurden In-Mold-Sensoren integriert. Abweichungen dieser Parametereinstellungen können Qualitätseinbußen bei den Endprodukten hervorrufen. Eine Qualitätsstation wurde eingerichtet, um jedes Teil einer individuellen Prüfung zu unterziehen. Darüber hinaus entwickelten die Optimierungsspezialisten ein virtuelles Puffersystem, damit jedes produzierte Teil nach dem Spritzgießen verfolgt werden konnte.

Einsatz der Optimierungssoftware voller Erfolg

Als Ergebnis erhielt Freudenberg Home and Cleaning Solutions eine KI-fähige Big-Data-Infrastruktur, welche die Grundlage für weitere Optimierungsmaßnahmen darstellt. Ein einheitliches Datenmodell wurde erstellt, das alle Einzelmessungen mit dem entsprechenden produzierten Teil verknüpft. So können gemessene Qualitätsmerkmale bei aufeinanderfolgenden Prozessschritten der Spritzgießzyklen zugeordnet werden. Uwe Dingert von Freudenberg ist überzeugt von dem gemeinsamen KI-Projekt: „Plus10 hat für unsere Spritzgießmaschinen eine hochfrequente Dateninfrastruktur aufgebaut. Ich war sehr begeistert von der Expertise und Verlässlichkeit.“

Das könnte Sie auch Interessieren

Bild: Trumpf SE + Co. KG
Bild: Trumpf SE + Co. KG
Künstliche Intelligenz macht Fabriken clever

Künstliche Intelligenz macht Fabriken clever

Seit dem Siegeszug des Chatbots ChatGPT ist künstliche Intelligenz in aller Munde. Auch in der industriellen Produktionstechnik kommt KI mit großen Schritten voran. Lernende Maschinen machen die Fertigung effizienter. Wie funktioniert das genau? Das können Interessierte auf der EMO Hannover 2023 vom 18. bis 23. September erfahren. Die Weltleitmesse für Produktionstechnologie wird ihr Fachpublikum unter dem Claim ‚Innovate Manufacturing‘. mit frischen Ideen inspirieren und künstliche Intelligenz spielt dabei ihre Stärken aus.

Bild: Mitsubishi Electric Corporation, Japan
Bild: Mitsubishi Electric Corporation, Japan
KI-gestütztes Analysetool für moderne Produktionslinien

KI-gestütztes Analysetool für moderne Produktionslinien

Das Data-Science-Tool Melsoft MaiLab von Mitsubishi soll Unternehmen bei der Digitalisierung ihrer Fertigung und unterstützen und so deren Produktivität steigern. Die neue Lösung ist eine intuitive, bedienerzentrierte Plattform, die KI nutzt, um Abläufe automatisch zu verbessern. Sei es Abfallvermeidung durch geringere Ausschussmengen, weniger Stillstandszeiten durch vorbeugende Wartung oder Senkung des Energieverbrauchs durch Prozessoptimierung.

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.