Studie zu Explainable Artificial Intelligence

Künstliche Intelligenz erklärbar machen

Künstliche Intelligenz hat meistens Black-Box-Charakter. Doch nur Transparenz kann Vertrauen schaffen. Um die jeweiligen Lösungswege künstlicher Intelligenz zu erklären, gibt es spezielle Software-Lösungen. Eine Studie des Fraunhofer IPA hat die unterschiedlichen Methoden verglichen und bewertet.
Bild: ©wacomka/stock.adobe.com

Insbesondere bei kritischen Anwendungen wollen Nutzer verstehen, wie eine von künstlicher Intelligenz getroffenen Entscheidung zustande kommt. Nur so sind Verbesserungen möglich, die zunehmend auch die Sicherheit betreffen. Zudem schreibt die europäische Datenschutzgrundverordnung vor, Entscheidungen nachvollziehbar zu machen.

Neun Verfahren verglichen

Rund um dieses Problem ist ein ganzes Forschungsfeld entstanden: die ’Explainable Artificial Intelligence’ (xAI), die erklärbare künstliche Intelligenz. Auf dem Markt gibt es unterschiedliche digitale Hilfen, die komplexe KI-Lösungswege erklärbar machen sollen. Experten des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA haben neun Erklärungsverfahren – wie LIME, SHAP oder Layer-Wise Relevance Propagation – miteinander verglichen und mithilfe von beispielhaften Anwendungen bewertet. Dabei zählten vor allem drei Kriterien:

Stabilität: Bei gleicher Aufgabenstellung soll das Programm stets dieselbe Erklärung liefern. Es darf nicht sein, dass für eine Anomalie in der Produktionsmaschine einmal Sensor A und dann Sensor B verantwortlich gemacht wird. Das würde das Vertrauen in den Algorithmus zerstören und das Ableiten von Handlungsoptionen erschweren.

Konsistenz: Gleichzeitig sollten nur geringfügig unterschiedliche Eingabedaten auch ähnliche Erklärungen erhalten.

Wiedergabetreue: Wichtig ist auch, dass Erklärungen tatsächlich das Verhalten des KI-Modells abbilden. Es darf beispielsweise nicht passieren, dass die Erklärung für die Verweigerung eines Bankkredits ein zu hohes Alter des Kunden benennt, obwohl eigentlich das zu geringe Einkommen ausschlaggebend war.

Die perfekte Methode gibt es nicht

Laut Studie haben sich alle untersuchten Erklärungsmethoden sich als brauchbar erwiesen. „Doch es gibt nicht die eine perfekte Methode“, sagt Nina Schaaf, die beim Fraunhofer IPA für die Studie verantwortlich ist. Große Unterschiede gibt es beispielsweise bei der Laufzeit, die ein Verfahren benötigt, so die Studienautoren. Die Auswahl der besten Software ist zudem maßgeblich von der jeweiligen Aufgabenstellung abhängig. So sind laut Untersuchung etwa Layer-Wise Relevance Propagation und Integrated Gradients für Bilddaten besonders gut geeignet. „Und schließlich ist immer auch die Zielgruppe einer Erklärung wichtig: Ein KI-Entwickler möchte und sollte eine Erklärung anders dargestellt bekommen als der Produktionsleiter, denn beide ziehen jeweils andere Schlüsse aus den Erklärungen“, resümiert Schaaf.

Fraunhofer - Institut IPA

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.