Software mit Machine-Learning-Funktion für beschleunigte Designs

Bild: Xilinx Inc.

Xilinx hat die Vivado ML Editions vorgestellt, die laut Unternehmen erste FPGA-EDA-Tool-Suite, die auf Machine-Learning (ML)-Optimierungsalgorithmen sowie fortschrittlichen, teambasierten Design-Flows basiert und signifikante Designzeit- und Kosteneinsparungen ermöglicht. Vivado ML Editions bietet eine 5x kürzere Kompilierzeit und durchschlagende Verbesserungen der Ergebnisqualität (QoR) von durchschnittlich 10% bei komplexen Designs, verglichen mit den gegenwärtigen Vivado HLx Editions.

„EDA-Designer stehen heute vor der Herausforderung, dass die Komplexität des Designs immer weiter zunimmt. Maschinelles Lernen ist der nächste große Schritt nach vorn, um den Designprozess zu beschleunigen und QoR-Gewinne zu erzielen“, so Nick Ni, Director of Marketing, Software and AI Solutions bei Xilinx. „Vivado ML wird Entwicklern helfen, die Designzyklen zu verkürzen und ein neues Maß an Produktivität von der Designerstellung bis zum Designabschluss zu erreichen.“

ML-basierte Funktionen

Vivado ML Editions unterstützt ML-basierte Algorithmen, die das Abschließen von Designs beschleunigen. Die Technologie bietet ML-basierte Logikoptimierung, Delay Estimation und intelligente Design Runs, die Strategien zur Reduzierung von Timing-Closure-Iterationen automatisieren.

Kürzere Kompilierzeit und teambasierte Produktivität

Xilinx führt außerdem das Konzept einer Abstract Shell ein, mit der Anwender mehrere Module innerhalb des Systems definieren können, die inkrementell und parallel kompiliert werden. Dies ermöglicht eine durchschnittliche Reduzierung der Kompilierzeit um das 5-fache und bis zu 17-fache im Vergleich zur traditionellen Kompilierung des gesamten Systems. Abstract Shell hilft auch, die IP des Kunden zu schützen, indem die Designdetails außerhalb der Module verborgen werden, was für Anwendungen wie FPGA-as-a-Service und Value-Added-Systemintegratoren entscheidend ist.

Thematik: Technologie
Xilinx Inc.

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige