Software entwickeln mit Low Code, No Code und GPT-3

Domänenwissen schlägt Coding-Skills

Begrenzte IT-Expertise und Ressourcen, Fachkräftemangel: Die Digitalisierung stellt kleine und mittelständische Unternehmen vor Herausforderungen. Low-Code- und No-Code-Technologien treten an, dieses Dilemma zu lösen. Sie befähigen alle Arbeitskräfte mit Domänenwissen, eigene Anwendungen zu erstellen - ohne große IT-Abteilung dahinter.
Konstruktionszeichnung des 'RoboSpector'
Konstruktionszeichnung des ‚RoboSpector‘Bild: Robotron Datenbank-Software GmbH & Wandelbots GmbH

Mehr als acht von zehn Unternehmen (84 Prozent) gaben in einer Befragung des Branchenverbandes Bitkom an, dass die Digitalisierung für das eigene Unternehmen in den Monaten der Pandemie an Bedeutung gewann. Allerdings hat das auch dazu geführt, dass die Unternehmen den Stand ihrer eigenen Digitalisierung deutlich kritischer einschätzen als vorher. Nur noch rund ein Viertel (27 Prozent) sehen sich selbst als digitale Vorreiter. Viele Projekte mussten in der Pandemie verschoben oder auf Eis gelegt werden, weil bei vielen Unternehmen plötzlich Existenzfragen in den Vordergrund rückten. Neben den akuten Pandemie-Problemen bleiben die chronischen Herausforderungen ungelöst: fehlende Expertise, zu wenig Mittel und der anhaltende Mangel an Fachkräften. Auf der anderen Seite wächst der Druck auf Unternehmen aller Branchen und Größen, maßgeschneiderte Microservices und Anwendungen viel stärker als bisher produktiv entlang der gesamten Wertschöpfungskette einzusetzen.

Mehr als Schlagworte

Cloud Computing, Big Data, künstliche Intelligenz (KI), Industrial IoT und Edge Computing sind nicht nur Buzzwords der IT-Industrie, sondern Themen, mit denen sich Unternehmen aktiv auseinandersetzen, um im weltweiten Wettbewerb mitzuhalten. In den kommenden fünf Jahren wird es 500 Millionen neue Apps geben, heißt es in einem Microsoft-Whitepaper über Low-Code-Programmierung. Das ist mehr, als in den vergangenen 40 Jahren entwickelt wurde. Viele dieser Anwendungen werden spezielle Aufgaben abbilden, die kaum durch Standardsoftware zu bedienen sind. Sie werden in einzelnen Abteilungen oder Unternehmensbereichen dazu beitragen, Daten nutzbar zu machen, Wartungszyklen zu optimieren oder neue Geschäftsmodelle zu etablieren. Das heißt: Bei den meisten Apps wird es sich um Microservices mit eng umrissenen Aufgabengebieten handeln, die oft kurzlebig sind und nur in den Unternehmen selbst entstehen können, weil sie keine kritische Masse für große Anwendergruppen erreichen.

Roboterteaching mit der 
Wandelbots Teaching Solution und dem TracePen
Roboterteaching mit der Wandelbots Teaching Solution und dem TracePenBild: Wandelbots GmbH

Programmieren ohne Coding-Kenntnisse

Um den Widerspruch zwischen dem Mangel an Fachkräften und kleinen Budgets sowie der wachsenden Nachfrage nach neuen Softwarelösungen aufzuheben, braucht es moderne Methoden: Low Code, No Code oder auch die KI-Sprachtechnologie GPT-3 sind drei dieser Techniken, die das Entwickeln von Software beschleunigen sowie günstiger und effizienter gestalten. Um solche Ansätze gewinnbringend einzuführen, müssen sich viele Unternehmen verändern. Sie brauchen technologische Reife und die Bereitschaft, sich auf Technologien wie Cloud Computing, künstliche Intelligenz und IoT einzulassen. Denn diese Digitalwerkzeuge helfen dabei, geschäftliche Anforderungen schneller zu erfüllen: durch automatisierte Workflows, vorgefertigte UX-Komponenten, vortrainierte KI-Funktionen, Programmieren per Drag&Drop oder per Eingabe durch natürliche Sprache wie bei GPT-3. Low-Code- und No-Code-Methoden verringern die Entwicklungskosten deutlich. Eine Forrester-Untersuchung zeigt beispielsweise, dass Microsoft Power Apps die durchschnittlichen Kosten für die App-Entwicklung um 74 Prozent reduzieren. Low Code und No Code können außerdem durch ihre Integration in vorhandene Software- und Cloud-Umgebungen sowie bestehende IT-Infrastrukturen punkten. Für Microsoft sind diese Ansätze und der Einsatz für die natürliche Sprachumgebung GPT-3 nicht nur technologische Lösungen. Sie zeigen vielmehr in der Praxis, was die Mission des Unternehmens bedeutet: ‚To empower every person and every organization on the planet to achieve more.‘

No-Code-Robotik und No-Code-AI bei BMW

Wie das in der Praxis gehen kann, zeigt etwa der Automobilhersteller BMW. In einer Fertigungslinie in Dingolfing setzt er mit Unterstützung des Dresdner IIoT-Spezialisten Robotron und des ebenfalls aus Dresden stammenden Unternehmens Wandelbots auf deren No-Code-Plattformen für Industrial Computer Vision und Roboter-Teaching. Die Einführung der Plattform ist die Antwort auf die Herausforderung, den regelmäßigen Austausch einzelner Komponenten in der Fahrzeugfertigung und die damit verbundenen Anpassungen in der Qualitätskontrolle schneller und einfacher zu gestalten. Normalerweise sind die Roboter in der industriellen Fertigung nicht zuerst auf Flexibilität ausgelegt, sondern eher darauf, immer wieder dieselben präzisen Bewegungen zuverlässig auszuführen. Für die Produktion sind sie damit aber immer häufiger zu unflexibel, denn nicht nur der Fahrzeugbau verlangt heute mehr und mehr nach individuellen Lösungen. Die No-Code-Softwareplattform von Wandelbots erfasst zum Beispiel über das handgeführte Eingabegerät TracePen einen gezeichneten Pfad, der die neuen Bewegungen des Roboters abbildet, visualisiert ihn für die weitere Anpassung in einer iPad-App und kann damit Präzision im Submillimeterbereich erreichen. Dieser Pfad wird anschließend im Hintergrund und ohne Codierung in die Programmiersprache des jeweiligen Roboters übersetzt und an dessen Controller übertragen. Und weil gerade große Unternehmen auf komplexe Zertifizierungsrichtlinien für ihren Code angewiesen sind, ermöglicht die Plattform auch die Definition von unternehmensspezifischer Codegenerierung. Außerdem sind die Arme des Roboters für die automatisierte Qualitätskontrolle mit einer Kamera ausgestattet, die mit Unterstützung von KI-Modellen prüft, ob die gefertigten Bauteile den Qualitätssicherungsstandards entsprechen. Für die Erstellung dieser KI-Modelle sind die Roboter an die Softwareplattform für Realtime Computer Vision (RCV) des Digitalisierungsspezialisten Robotron Datenbank-Software GmbH angeschlossen. Robotron automatisiert die Ermittlung relevanter Informationen und den RCV-Workflow über Microsoft Azure MLOps (Machine Learning Operations).

Seiten: 1 2 3Auf einer Seite lesen

Microsoft Deutschland GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige