Anreiz für Investitionen in KI: So soll der Wert von Daten für Unternehmen sichtbar werden

Prof. Dr.-Ing. Wolfgang Maaß (Universität des Saarlandes) Bild: Oliver Dietze

Unternehmen lassen sich heute riesige Gewinne entgehen. Einfach, weil sie aus den Daten, die z.B. Sensoren in Fertigungsstraßen ohnehin sammeln, nichts machen. Oder auch, weil sie solche Daten erst gar nicht erheben. „Um es bildhaft auszudrücken: Dieses Feld liegt entweder brach, oder es wird schlicht nicht geerntet“, bringt es Professor Wolfgang Maaß von der Universität des Saarlandes auf den Punkt. Dabei ist es für die künstliche Intelligenz, die vom Rohstoff bis zum fertigen Produkt Einzug in alle Unternehmensbereiche halten soll, unumgänglich, dass solche Daten ausgewertet und damit die Prozesse transparent werden. „Im deutschen Mittelstand bestehen noch große Hemmnisse, in die digitale Transformation zu investieren. Die Unternehmen scheuen sich, Geld in die Hand zu nehmen, erkennen nicht das Potenzial, das hier liegt. Das wollen wir ändern“, erklärt der Wirtschaftsinformatiker. Gemeinsam mit Partnern aus Forschung und Wirtschaft will er belastbare Kenngrößen und Bewertungssystematiken für das unternehmerische Datenkapital entwickeln und so auch Anreiz für Investitionen liefern.

Den Wert von Daten nutzen

Der Wert von Daten ist schwer zu greifen und schwer zu beziffern. Ein Beispiel: Bis eine Industrieanlage perfekt eingestellt ist und alle Maschinen aufeinander abgestimmt sind, dauert es Jahre. Das Knowhow, bei welcher Temperatur, welcher Schwingungsfrequenz, mit welcher Geschwindigkeit – oder was sonst noch an Daten einfließt – am besten produziert wird, ist Gold wert – aber: Wie viel? Da fällt es schwer, große Investitionen in zusätzliche Sensoren oder Auswertungen zu begründen. „Die digitale Transformation erfordert Investitionen in Sachkapital, Software, in Aus- und Weiterbildung der Mitarbeiter“, sagt Wolfgang Maaß. „Es existieren derzeit aber keine standardisierten, belastbaren Kennzahlen, die den wirtschaftlichen Erfolg solcher Investitionen in die digitale Transformation beziffern. Daten, die im Zuge der Investition in die digitale Transformation anfallen, werden nicht systematisch finanziell bewertet und dem Management als Entscheidungshilfe zur Verfügung gestellt“, erläutert er. Das Grundproblem ist, dass Unternehmen dieses Datenkapital bislang nicht in Bilanzen ausweisen können: Kaufmännische Bilanzkennzahlen sind handfeste Argumente. „Zwar kann meist genau beziffert werden, was investiert werden müsste. Unklar aber bleibt, wann und wie sich das auszahlt. Rückflüsse liegen meist in fernerer Zukunft oder können nur zusammen mit weiteren Projekten realisiert werden“, erklärt Maaß. Könnte den Daten, die ein Unternehmen hat oder zukünftig haben wird, ein Geld-Wert zugeordnet werden, würde dies viele Investitionsentscheidungen positiver ausfallen lassen.

Projekt ‚Future Data Assets‘

Ziel des Projekts ‚Future Data Assets‘ ist es, mithilfe von Verfahren maschinellen Lernens und Methoden künstlicher Intelligenz eine Datenbilanz zu entwickeln. „Wir wollen ein Werkzeug schaffen, das der Unternehmensleitung die erforderlichen Datenbilanz-Kennzahlen liefert: standardisiert, stetig optimiert, automatisiert und an die jeweilige Branche angepasst“, erklärt Wolfgang Maaß. Das Bundeswirtschaftsministerium fördert diese Forschung über das Technologieprogramm ‚Smarte Datenwirtschaft‘. Im Rahmen des Projekts ‚Future Data Assets‘ arbeitet Professor Wolfgang Maaß von der Universität des Saarlandes mit dem Forschungsinstitut für Rationalisierung FIR an der RWTH Aachen und Partnern aus der Wirtschaft zusammen: dem Unternehmen Atlan-tec (Konsortialführer), der Wirtschaftsprüfungsgesellschaft Deloitte, dem Werkzeugmaschinenhersteller DMG Mori AG sowie den Firmen Kuraray und Swissdata.

Universität des Saarlandes
iss.uni-saarland.de/de/projects/future-data-assets/

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige