VDI-Kongress Automation 2019

VDI-Kongress Automation 2019

Auf dem Weg zur
autonomen Produktion

Bild: VDI Wissensforum GmbH

Bricht demnächst das Zeitalter der komplett autonomen Anlagen an? Und wenn ja: Wie lässt sich die Anzahl der Bedienereingriffe in der Prozessleittechnik auf null reduzieren? Darüber diskutieren die Teilnehmer der diesjährigen VDI-Konferenz Automation 2019 am 2. und 3. Juli in Baden-Baden.
Mit Blick auf eine autonome Produktion lassen sich zwei Trends identifizieren: Trotz des immer höheren Automatisierungsgrades werden die Prozesse komplexer. Zudem muss eine exponential zunehmende Datenmenge berücksichtigt werden. Künstliche Intelligenz wird hier oft als das noch fehlende Stück zur Lösung angesehen: „KI wird oft als Synonym für Regressionsmodelle und maschinelles Lernen verwendet. Die Erwartungen sind groß, ebenso wie die möglichen Enttäuschungen“, erklärt Dr. Sven Lohmann, Automation Solution Architect bei Emerson Process Management.

Maschinelle Kognition

Tatsächlich geht es bei künstlicher Intelligenz nicht mehr nur um tiefes Lernen oder adaptive Modelle, sondern vielmehr um die Nachahmung von menschlicher Kognition, die z.B. auf Expertenwissen basiert – deterministisch, getestet, validiert und bewährt. „Die Erfassung und algorithmische Bereitstellung des Wissens ist ein Schlüsselfaktor für autonome Anlagen“, bringt es Lohmann auf den Punkt. „Der Einsatz von Expertenwissen online ist so, als ob man den erfahrensten und kenntnisreichsten Mitarbeiter einsetzt, der den Betrieb rund um die Uhr mit der Reaktionszeit eines Computers betreut, ohne müde oder krank zu werden, ohne in Urlaub oder in Rente zu gehen.“

Modelle für Vorhersage und Optimierung

Schon heute gibt es Lösungen wie KnowledgeNet (KNet), mit denen sich solches Expertenwissen erfassen lässt. Daraus lassen sich direkt ausführbare Anwendungen umsetzen. „Machine Learning and Advanced Modeling and Analytics, die in KNet zur Verfügung stehen, ermöglichen es, ein tieferes Verständnis der Prozesse zu entwickeln und Modelle für die Vorhersage und Optimierung einzusetzen“, beschreibt Lohmann die Vorteile: Die Kombination beider Ansätze biete somit ein leistungsfähiges Hybridmodell. Der selbstlernende Algorithmus im Sinne von Deep Learning biete somit viele Chancen auf dem Weg zur autonomen Produktion. Durch die Anwendung der Analytik ist KNet in der Lage, abnormales Prozessverhalten zu erkennen und Gegenmaßnahmen einzuleiten. Das System wurde unter anderem bereits am Standort Abqaiq von Saudi Aramco zur Optimierung des Energieverbrauchs mit Erfolg eingesetzt.

Seiten: 1 2Auf einer Seite lesen

VDI Wissensforum GmbH
www.vdi-wissensforum.de

Das könnte Sie auch Interessieren

Bild: Trumpf SE + Co. KG
Bild: Trumpf SE + Co. KG
Künstliche Intelligenz macht Fabriken clever

Künstliche Intelligenz macht Fabriken clever

Seit dem Siegeszug des Chatbots ChatGPT ist künstliche Intelligenz in aller Munde. Auch in der industriellen Produktionstechnik kommt KI mit großen Schritten voran. Lernende Maschinen machen die Fertigung effizienter. Wie funktioniert das genau? Das können Interessierte auf der EMO Hannover 2023 vom 18. bis 23. September erfahren. Die Weltleitmesse für Produktionstechnologie wird ihr Fachpublikum unter dem Claim ‚Innovate Manufacturing‘. mit frischen Ideen inspirieren und künstliche Intelligenz spielt dabei ihre Stärken aus.

Bild: Mitsubishi Electric Corporation, Japan
Bild: Mitsubishi Electric Corporation, Japan
KI-gestütztes Analysetool für moderne Produktionslinien

KI-gestütztes Analysetool für moderne Produktionslinien

Das Data-Science-Tool Melsoft MaiLab von Mitsubishi soll Unternehmen bei der Digitalisierung ihrer Fertigung und unterstützen und so deren Produktivität steigern. Die neue Lösung ist eine intuitive, bedienerzentrierte Plattform, die KI nutzt, um Abläufe automatisch zu verbessern. Sei es Abfallvermeidung durch geringere Ausschussmengen, weniger Stillstandszeiten durch vorbeugende Wartung oder Senkung des Energieverbrauchs durch Prozessoptimierung.

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.