Bauteilerkennung nach dem SLS-Druck

Bauteilerkennung nach dem SLS-Druck

Mit Deep Learning fehlerfrei und schnell sortieren

Um im Wettbewerb zu bestehen, nehmen Produzenten längst ihre gesamte Prozesskette unter die Lupe. Vor diesem Hintergrund hat die Protiq GmbH das Optimierungspotenzial des Teilprozesses untersucht, in dem generativ hergestellte Bauteile ihren Aufträgen zugeordnet werden. Mittels Machine Learning gelang es, den Sortieraufwand dafür deutlich zu reduzieren.

Die Prozesskette der additiven Fertigung beginnt mit der Konstruktion eines Objekts durch den Endnutzer und führt über die Bestellung, den Produktionsprozess sowie die Qualitätskontrolle und Zuordnung bis zum Versand an den Endkunden. (Bild: Protiq GmbH)

Die Prozesskette der additiven Fertigung beginnt mit der Konstruktion eines Objekts durch den Endnutzer und führt über die Bestellung, den Produktionsprozess sowie die Qualitätskontrolle und Zuordnung bis zum Versand an den Endkunden. (Bild: Protiq GmbH)

Die additive Fertigung ist ein vergleichsweise junges und aufstrebendes Herstellungsverfahren. Gegenüber herkömmlichen Ansätzen eröffnet der 3D-Druck verschiedene Vorteile. So sind die Fertigungskosten eines Bauteils weitgehend unabhängig von der herzustellenden Stückzahl. Da für die Produktion keine produktspezifischen Werkzeuge oder Formen benötigt werden, lassen sich selbst Einzelstücke günstig herstellen. Aufgrund der geringen fertigungstechnischen Einschränkungen ergeben sich des Weiteren hohe gestalterische Freiheitsgrade. Durch die Kombination dieser beiden Aspekte eignet sich der 3D-Druck daher bestens zur Produktion von Sonderanfertigungen und Prototypen. Sowohl private als auch industrielle Nutzer können nahezu jede kreative Idee umzusetzen.

Da die Kapazitäten der additiven Fertigung stetig erweitert werden, steigt auch der Bedarf an Automatisierungslösungen. (Bild: Protiq GmbH)

Da die Kapazitäten der additiven Fertigung stetig erweitert werden, steigt auch der Bedarf an Automatisierungslösungen. (Bild: Protiq GmbH)

Verschiedene Teile im Bauraum

Um die Prozesskette der additiven Fertigung zu optimieren, hat der 3D-Druck-Dienstleister und Plattformbetreiber Protiq bereits große Teile davon automatisiert. Der Ablauf beginnt bei der Konstruktion und führt vom Herstellungsprozess über Qualitätskontrollen bis zum fertigen Bauteil. Die Optimierung startet bei der auf dem CAD-Modell basierenden Kalkulation der Produktionskosten und umfasst weitere Schritte der digitalen Vor- sowie der maschinellen Nachbearbeitung der Bauteile. Auf der Suche nach weiterem Verbesserungspotenzial hat das Unternehmen nun den Prozesskettenabschnitt der Bauteilzuordnung genauer untersucht, der nach dem Selective-Laser-Sintering-Verfahren (SLS) stattfindet. Beim SLS handelt es sich um die derzeit am häufigsten angewendete Methode zur additiven Fertigung von Kunststoffbauteilen in der industriellen Produktion. In einem Bauraum wird hier Schicht für Schicht Kunststoffpulver aufgetragen und durch einen Laser dort aufgeschmolzen, wo das Bauteil oder die Bauteile entstehen sollen. Das Material härtet direkt nach dem Aufschmelzen wieder zu einem festen Kunststoffkörper aus. Durch das schichtweise Auftragen des Pulvers bildet sich Stück für Stück ein dreidimensionaler Korpus aus. Bei diesem Verfahren können Anwender in einem Bauraum nicht nur ein Bauteil, sondern eine beliebige Anzahl unterschiedlicher Bauteile herstellen, die dreidimensional im Raum geschachtelt sind, um den Bauraum besser auszunutzen. Der Nachteil ist, dass die gemeinsam gefertigten Bauteile nach der Herstellungsphase wieder vereinzelt und sortiert werden müssen. Diese eigentlich manuelle Aufgabe lässt sich durch den Einsatz von Methoden der Automatisierungstechnik deutlich beschleunigen.

An der Sortierstation wird industrielle Kameratechnik zur visuellen Erfassung der Bauteile genutzt. Mit Hilfe eines Beamers werden die passenden Bauteile Auftrag für Auftrag farblich markiert, um den Mitarbeiter zu unterstützen. Über ein zugehöriges (Bild: Protiq GmbH)

Maschinelles Sehen

Im Zeitalter von Industrie 4.0 erweist sich die Automatisierung von Produktionsketten in vielen industriellen Prozessen schon lange als Stand der Technik. Dazu werden Roboter mit den zugehörigen Sensoren und Aktoren verwendet. Ein Beispiel für das sogenannte maschinelle Sehen (Machine Vision) in der Serienfertigung ist der Transport und die Sortierung von Gütern auf Fließbändern. Moderne Kameratechnik ermöglicht es, Objekten inklusive der zugehörigen Lageposition und -orientierung auf dem Förderband automatisch zu erkennen. So können die Objekte von Robotern gegriffen und weiterverarbeitet werden.

Seiten: 1 2Auf einer Seite lesen

Phoenix Contact Deutschland GmbH
www.phoenixcontact.com

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige