Förderung für die KI-Forschung der Technomathematik

Künstliche Intelligenz (KI) ist zurzeit einer der dynamischsten Forschungs- und Wirtschaftsbereiche. Ob es um Sprachassistenzsysteme, Krebsdiagnose oder Autonomes Fahren geht – eine korrekte und leistungsfähige mathematische Basis ist stets die Voraussetzung für neue KI-Lösungen. Die Expertise dafür kommt auch aus der Universität Bremen: Das Zentrum für Technomathematik erhält jetzt zwei Millionen Euro, um in mehreren Projekten als wissenschaftlicher Partner neue KI-Anwendungen zu realisieren.
Wie entwickelt sich der Stromverbrauch in einer bestimmten Region? Eine Arbeitsgruppe des Zentrums für Technomathematik arbeitet an KI-Lösungen mit, die diesen Bick in die nähere Zukunft ermöglichen.
Wie entwickelt sich der Stromverbrauch in einer bestimmten Region? Eine Arbeitsgruppe des Zentrums für Technomathematik arbeitet an KI-Lösungen mit, die diesen Bick in die nähere Zukunft ermöglichen. Bild: Siemens AG

‚Deep Learning‘, was auf Deutsch etwa ‚tiefes Lernen‘ oder ‚vielschichtiges Lernen‘ bedeutet, ist ein hochinteressanter Teilbereich der künstlichen Intelligenz. „Letztlich bezeichnet dieser Begriff eine Technik zum maschinellen Lernen, die durch das Netzwerk von Neuronen im menschlichen Gehirn inspiriert ist“, sagt Dr. Jens Behrmann, Leiter des Arbeitsbereichs Deep Learning der AG Technomathematik im gleichnamigen Zentrum an der Universität Bremen. Was die Forschung auf diesem Gebiet angeht, ist die Expertise der Bremer Uni-Mathematiker sehr gefragt: Das Bundesministerium für Bildung und Forschung (BMBF) und die Klaus-Tschira-Stiftung fördern das Zentrum für Technomathematik (ZeTeM) jetzt mit insgesamt zwei Millionen Euro. In sieben Projekten – angesiedelt in der ZeTeM-Arbeitsgruppe von Professor Peter Maaß – soll mathematische KI-Grundlagenforschung mit konkreter industrieller Anwendbarkeit verbunden werden.

Informationen erkennen und interpretieren

„Beim Deep Learning geht es darum, dass Maschinen Kompetenzen erlernen, und zwar in der gesamten Verarbeitungskette vom Erkennen der Rohinformationen bis zur Interpretation und dem Treffen einer Aussage“, erläutert Dr. Lena Hauberg-Lotte, die ebenfalls im Deep Learning-Bereich arbeitet. Was heute mit Anwendungen wie dem Google Translator oder dem Übersetzungsprogramm DeepL praktisch reibungslos klappt, fußt auf jahrelangen intensiven KI-Forschungen, auch und gerade von Mathematikerinnen und Mathematikern. Die Erfolge von Deep Learning sind seit einigen Jahren spürbar und in den Alltag eingezogen – neben der Sprach- und Bildererkennung auch bei der Navigation oder Übersetzungen. Doch die Entwicklung geht unaufhaltsam weiter, „und an einer entscheidenden Stelle mittendrin ist immer die Mathematik mit ihren Algorithmen. Die werden immer spezieller, je schwieriger die Fragestellungen und Anwendungen werden“, so Jens Behrmann. „Damit KI z.B. zuverlässig als Assistenz in der Medizin eingesetzt werden kann, müssen die Algorithmen zu 100 Prozent fehlerfrei funktionieren.“

Sieben Projekte mit zahlreichen Partnern

Die Bandbreite möglicher KI-Anwendungen ist riesig und wird das menschliche Leben umfassend beeinflussen und verändern. Die Expertise der Bremer Technomathematiker fließt nun in sieben neue Projekte ein, die gemeinsam mit weiteren Partnern aus Wirtschaft und Wissenschaft bearbeitet werden. Zu den Industriepartnern gehören unter anderem EWE, Siemens, Engineering System International, die Deutsche Bahn, Bruker Daltonik, ProteoPath, ProCon X-Ray, Atacama Blooms und Volkswagen.

Zwei Beispiele: Im Projekt Agens (‚Analytisch-generative Netzwerke zur Systemidentifikation‘) arbeitet das Technomathematik-Team gemeinsam mit den Industriepartnern EWE und Siemens sowie Wissenschaftspartnern aus Kaiserslautern und Aschaffenburg an der Voraussage von künftigen Strombedarfen. „Hintergrund ist, dass der regionale Stromanbieter EWE mit Sitz in Oldenburg täglich den voraussichtlichen Strombedarf seiner mittelständischen Kunden bei den Netzbetreibern anmelden muss“, erläutert Jens Behrmann. Aufgrund des immer größeren Anteils erneuerbarer Energie ist der Strommarkt sehr schwankend geworden, so dass für einen sicheren Betrieb möglichst genaue Hochrechnungen erforderlich sind. Dazu werden im Projekt Agens neue KI-Modelle entwickelt, die unzählige Daten aus Vergangenheit und Zukunft (etwa bisheriger Verbrauch, Wettervorhersage, Lastspitzen) miteinander verknüpfen und daraus eine belastbare Prognose ableiten.

Wie KI Ärzte bei der Krebsdiagnose entlastet In einem Vorhaben mit dem Namen SPA+ (‚Small Data Probleme in der digitalen Pathologie und programmbegleitende Maßnahmen‘) geht es um verschiedene Ansätze, bei der KI in der Krebsdiagnostik als Assistenzsystem für Ärztinnen und Ärzte in der digitalen Pathologie wirken soll. „Momentan beurteilen die Ärzte die hochaufgelösten digitalen Bilder von entnommenem Gewebe in der Regel auf sehr großen Bildschirmen oder direkt unter dem Mikroskop – eins nach dem anderen, den ganzen Tag“, so Lena Hauberg-Lotte. Eine aufwändige und ermüdende Arbeit. KI-Programme sollen dabei helfen, die für die Beurteilenden wichtigen Bereiche herauszufiltern. „Hier geht es darum, die Routine durch KI erledigen zu lassen. Die Expertinnen und Experten erhalten so mehr Zeit für die eigentliche Sichtung und Einschätzung der kritischen Erkrankungen.“ Projektpartner sind bei SPA+ das Bremer Unternehmen Bruker Daltonik, die Firma ProteoPath aus Trier und die Universitäten Oldenburg und Siegen.

Thematik: Newsarchiv
| News
Zentrum für Technomathematik (ZeTeM) Universität Bremen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige