Manipulation automatisierter Gesichtserkennung verhindern

Von der Entsperrung von Smartphones bis zu schnelleren Einlasskontrollen am Flughafen: Die Verbreitung der automatisierten Gesichtserkennung zur Identifikation von Personen nimmt zu. Doch diese Authentifizierungsmethode ist anfällig gegenüber Morphing-Angriffen: Kriminellen bietet sie die Möglichkeit, zwei Gesichtsbilder zu einem zu verschmelzen. Wird ein Reisepass mit einem derart manipulierten Foto ausgestattet, können zwei Personen den gleichen Ausweis nutzen. Fraunhofer-Forscherteams entwickeln gemeinsam mit Partnern ein System, das diese Art von Angriffen vereitelt. Dabei bedienen sie sich Methoden des maschinellen Lernens.

Bild: Fraunhofer-Institut HHI

Wer regelmäßig in die USA reist, ist es gewohnt, bei der Passkontrolle in eine Kamera schauen zu müssen. Das elektronische Foto wird blitzschnell mit dem im biometrischen Pass gespeicherten Bild verglichen. Bei dieser biometrischen Gesichtserkennung ermittelt ein Programm die digitalen Daten des Live-Bildes, vergleicht sie mit den Daten des Chip-Bildes und kann so feststellen, ob die Gesichter auf den Fotos in den individuellen Merkmalen übereinstimmen. Die Methode soll den Zugriff auf sensible Daten und unberechtigten Personen den Zutritt verweigern. Doch sie ist anfällig gegenüber gezielten Angriffen. „Kriminelle sind in der Lage, die Gesichtserkennungssysteme – wie sie auch bei der Grenzkontrolle eingesetzt werden – so auszutricksen, dass zwei Personen denselben Pass verwenden können“, weiß Lukasz Wandzik, Wissenschaftler am Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK in Berlin. Gemeinsam mit seinen Kolleginnen und Kollegen vom Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI und weiteren Partnern entwickelt er Verfahren, die Bildanomalien erkennen, die bei der digitalen Bildverarbeitung in Morphing-Prozessen auftreten. „Der Morphing-Angriff wird ausgeführt, indem zwei Gesichtsbilder zu einem synthetischen Gesichtsbild verschmolzen werden, das die Eigenschaften beider Personen enthält“, erklärt Wandzik. Mit diesem Foto im Reisepass werden beide Personen durch ein biometrisches Gesichtserkennungssystem authentifiziert.

Die Attacken könnten beispielsweise vor oder beim Beantragen von Ausweisen stattfinden. Im Projekt ANANAS, kurz für „Anomalie-Erkennung zur Verhinderung von Angriffen auf gesichtsbildbasierte Authentifikationssysteme“, widmen sich die Partner diesem Problem, indem sie simulierte Bilddaten analysieren und erforschen. Dabei werden moderne Methoden der Bildverarbeitung und des maschinellen Lernens angewandt, insbesondere tiefe neuronale Netze, die explizit für die Verarbeitung von Bilddaten konzipiert wurden. Diese komplexen Netze bestehen aus zahlreichen Ebenen, die in vielschichtigen Strukturen miteinander verknüpft sind. Sie beruhen auf Verbindungen zwischen mathematischen Berechnungseinheiten und bilden die Neuronenstruktur des menschlichen Gehirns nach.

Identitätsdiebstahl mit neuronalen Netzen vermeiden

Um die zu entwickelnden Verfahren und Systeme testen zu können, erzeugen die Projektpartner im ersten Schritt die Daten, mit denen die bildverarbeitenden Programme trainiert werden, um Manipulationen zu erkennen. Hierfür werden verschiedene Gesichter zu einem gemorpht. „Um zu entscheiden, ob ein Gesichtsbild authentisch ist oder durch einen Morphing-Algorithmus erstellt wurde, haben wir tiefe neuronale Netze auf gemorphte und reale Gesichtsbilder trainiert. Diese können manipulierte Bilder anhand der dadurch entstehenden Veränderungen erkennen, speziell auch in semantischen Bereichen wie in Gesichtsmerkmalen oder Glanzlichtern in den Augen“, erläutert Prof. Peter Eisert, Abteilungsleiter Vision & Imaging Technologies am Fraunhofer HHI, die Vorgehensweise.

LRP-Algorithmen machen KI-Prognosen erklärbar

Die neuronalen Netze entscheiden sehr zuverlässig, ob es sich um echte oder gefälschte Bilder handelt, die Trefferquote bei den im Projekt erstellten Testdatenbanken liegt bei über 90 Prozent. ‚Das Problem ist jedoch vielmehr, dass man nicht weiß, wie das Neuronale Netz die Entscheidung getroffen hat“, sagt Eisert. Daher interessiert die Forscherinnen und Forscher am Fraunhofer HHI neben einer Entscheidung über die Echtheit eines Bildes auch der Entscheidungsgrund. Zu diesem Zweck analysieren sie mit eigens entwickelten LRP-Algorithmen (Layer-Wise Relevance Propagation) die Regionen im Gesichtsbild, die für die Entscheidung relevant sind.

Die Forscher nutzen diese Informationen auch, um die neuronalen Netze robuster zu gestalten, um unterschiedlichste Angriffsmethoden erkennen zu können. „Die Kriminellen können auf immer ausgefeiltere Angriffsmethoden zurückgreifen, z.B. auf KI-Verfahren, die komplett künstliche Gesichtsbilder erzeugen. Indem wir unsere neuronalen Netze optimieren, versuchen wir, den Fälschern einen Schritt voraus zu sein und zukünftige Attacken zu identifizieren“, sagt der Professor für Informatik.

Eine Demonstrator-Software inklusive Anomalieerkennung und Auswertungsverfahren liegt bereits vor. Sie umfasst verschiedene, miteinander fusionierte Detektormodule der einzelnen Projektpartner. Die vernetzten Module wenden unterschiedliche Erkennungsverfahren an, um eine Manipulation zu ermitteln, woraus am Ende des Prozesses ein Gesamtresultat erzeugt wird. Ziel ist es, die Software in bestehende Gesichtserkennungsysteme an Grenzkontrollen zu integrieren bzw. diese um die Morphingkomponenten zu erweitern und so Fälschungen durch entsprechende Angriffe auszuschließen.

Thematik: Allgemein
Fraunhofer-Institut HHI
https://www.hhi.fraunhofer.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige