Künstliche Intelligenz und MES

Auf dem Weg in die 5. industrielle Revolution

Die Einbindung von künstlicher Intelligenz auf Werksebene bietet enorme Optimierungs- und Produktionssteigerungspotentiale - obwohl die wirtschaftliche Nutzung erst seit kurzem möglich und noch gar nicht alle Anwendungsfelder greifbar sind. Doch um den Blick auf die Zukunft der Produktion zu schärfen, müssen die Vergangenheit und technologische Innovationen verstanden sein.
Künstliche Intelligenz und Robotik werden zunehmend auch im produzierenden Mittelstand implementiert. Dort eingesetzte MES-Anwendungen müssen technologisch auf ein Zusammenspiel mit solchen Applikationen vorbereitet sein.
Künstliche Intelligenz und Robotik werden zunehmend auch im produzierenden Mittelstand implementiert. Dort eingesetzte MES-Anwendungen müssen technologisch auf ein Zusammenspiel mit solchen Applikationen vorbereitet sein. Bild: ©Seventyfour/stock.adobe.com

Die Industrie beziehungsweise die industrielle Produktion hat im Verlauf ihrer Geschichte viele kleinere, aber auch drei große Revolutionen durchlebt – die vierte industrielle Revolution ist in vollem Gange und stellt Unternehmen vor neue Herausforderungen, bietet aber auch große Chancen. Denn was mit der Erfindung der Dampfmaschine begann, ist inzwischen zu einem komplexen und oft vollautomatisierten System geworden. Nicht nur das zu fertigende Gut hat einen wirtschaftlichen Wert, die Patente, das Know-how und vor allem die Produktionsdaten sind mindestens gleichwertig. Denn um eine effektive und produktive Fertigung organisieren zu können, spielen heutzutage valide Daten eine zentrale Rolle.

Arbeitskraft und Planungswissen

Maschinelle Energieerzeugung und -nutzbarmachung haben im Zuge der ersten industriellen Revolution Menschen und Tieren körperliche Arbeit abgenommen. Neu erfundene Maschinen konnten schwere Tätigkeiten übernehmen – ohne Ermüdungserscheinungen und auf meist gleichbleibendem Niveau. Die maschinelle Energiegewinnung ermöglicht im nächsten Schritt auch eine effiziente Fließbandproduktion, also eine Massenanfertigung, die nur durch menschliche Arbeit nicht möglich gewesen wäre. Der Mensch bekam eine neue Rolle im Fertigungsprozess, in dem er Maschinen und Prozesse verbesserte, Produktions- und Logistikkonzepte erarbeitete und vermehrt Kontroll- und Qualitätssicherungsaufgaben übernahm. Die Elektrifizierung, die Erfindung von Computern und automatisierten Anlagen sowie die aktuellen Digitalisierungsprozesse haben maßgeblich dazu beigetragen, dass sich die Produktions- und Arbeitswelten erneut verändert haben. Dabei standen in der Regel die Verbesserung der Produktivität, der Energienutzung und der Prozessoptimierung mit dem Ziel höherer Produktion, verbesserter Qualität und effizienterer Ressourcennutzung im Vordergrund.

Produktionsmanagement wird digital

Grundlage einer im globalen Kontext wettbewerbsfähigen Fertigung ist heute meist ein digitales Produktionsmanagement und -leitsystem, welches alle relevanten Betriebs- und Maschinendaten erfasst und verarbeitet. Manufacturing Execution Systems (MES) erzeugen und speichern riesige Datenmengen (Big Data) – spezielle Tools ermöglichen eine produktions- und prozessorientierte Datenanalyse und unterstützen Planungsverantwortliche bei der bestmöglichen Planung der Logistik, des Materialflusses und der Fertigung. Möglich wird die Digitalisierung der Industrie und somit im nächsten Schritt auch die Einführung von KI-basierten MES-Lösungen durch die exponentiell gestiegenen Speicher- und Datenverarbeitungskapazitäten moderner Computer. Hochspezialisierte Softwarelösungen können nicht mehr nur lokal beziehungsweise arbeitsplatzgebunden eingesetzt werden, sondern ermöglichen eine produktions-, abteilungs- und unternehmensübergreifende Vernetzung – das Industrial Internet of Things (IIoT).

Künstliche Intelligenz als Antwort auf Big Data

Noch während die vierte industrielle Revolution, die Digitalisierung und weltweite Vernetzung im vollen Gang ist, kündigt sich schon der nächste bahnbrechende Innovationsschub an. Denn die künstliche Intelligenz zieht zunehmend in Werkshallen und das Produktionsmanagement ein und revolutioniert dabei die fertigungsnahe Datenverarbeitung. Die großen Datenmengen, die durch den Einsatz von Manufacturing Execution Systems bereits vorhanden sind, können von KI-Algorithmen tiefgreifend und strukturell analysiert und nutzbar gemacht werden. Denn während MES-Lösungen zwar sehr effektiv in ihren jeweiligen Anwendungsgebieten sind, können sie mit Hilfe von KI-Unterstützung Muster und Regelmäßigkeiten erkennen und Big Data in Smart Data verwandeln. Eine derart umfangreiche Daten- und Zusammenhangsanalyse führt dazu, dass Maschinen eine Art Lerneffekt (Machine Learning) aus Produktionsdaten und -prozessen ziehen können und sich so Prognosen und aussagekräftige Simulationen ergeben.

Seiten: 1 2 3Auf einer Seite lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige