App zur automatischen Überwachung der Druckqualität in der Additiven Fertigung

Qualitätsüberwachung: Die Wissenschaftlerinnen und Wissenschaftler werden Sensoren am Drucker anbringen, um Fehler zu erkennen wie etwa einen verstopften Druckkopf.
Qualitätsüberwachung: Die Wissenschaftlerinnen und Wissenschaftler werden Sensoren am Drucker anbringen, um Fehler zu erkennen wie etwa einen verstopften Druckkopf.Bild: Désirée Binder / IPH

Der 3D-Druck ermöglicht eine Produktion in Losgröße 1. Das bedeutet, dass kein Produkt dem anderen gleicht, weil jedes Teil individuell für den Kunden entworfen wird. Eine Herausforderung für Unternehmen ist allerdings die Qualitätssicherung. Wissenschaftlerinnen und Wissenschaftler des Instituts für Integrierte Produktion Hannover (IPH) gGmbH und des Werkzeugmaschinenlabors WZL der RWTH Aachen arbeiten an einer Lösung, um insbesondere kleine und mittlere Unternehmen bei der Zulassung patientenindividueller Medizinprodukte aus dem 3D-Drucker zu unterstützen: Sie wollen eine App entwickeln, die bei der Qualitätssicherung hilft und sämtliche Sensordaten automatisiert auswertet.

Die Forscherinnen und Forscher wollen einen industriellen 3D-Drucker mit Sensortechnik ausstatten, um den Druckvorgang lückenlos zu überwachen. Die Sensordaten werden in einer App mithilfe von künstlicher Intelligenz über ein Qualitätsmodell ausgewertet, um Produktionsfehler zuverlässig zu erkennen. Die Wissenschaftlerinnen und Wissenschaftler des IPH und des WZL konzentrieren sich vorrangig auf die Medizintechnik, weil in dieser Branche der Grad der Individualisierung der Produkte und die dazugehörigen Qualitätsanforderungen besonders hoch sind sowie im Rahmen einer Zulassung der Nachweis eines Qualitätssicherungssystems erbracht werden muss. 

Für das Forschungsprojekt nutzt das IPH den Industriedrucker X500PRO der German RepRap GmbH. Als Druckmaterial dient der Kunststoff Acrylnitril-Butadien-Styrol (ABS), der eine vergleichsweise hohe Festigkeit aufweist, aber sehr temperatursensibel ist.

Zur Überwachung der Druckqualität wollen die Wissenschaftlerinnen und Wissenschaftler verschiedene Sensoren nutzen. Denkbar sind z.B. Sensoren, die die Temperatur der Bauplatte oder Baukammer messen, Infrarotsensoren, mit denen sich die Temperatur direkt am Druckkopf bestimmen lässt, Vibrationssensoren sowie optische Messtechnik. Aussagekräftig für die Qualitätsüberwachung sind auch akustische Signale. Um wichtige von unwichtigen Geräuschen zu unterscheiden, wollen die Forscherinnen und Forscher Machine Learning nutzen.

Thematik: Technologie
RWTH Aachen University Werkzeugmaschinenlabor WZL der RWTH Aachen

Das könnte Sie auch Interessieren

Bild: Mitsubishi Electric Corporation, Japan
Bild: Mitsubishi Electric Corporation, Japan
KI-gestütztes Analysetool für moderne Produktionslinien

KI-gestütztes Analysetool für moderne Produktionslinien

Das Data-Science-Tool Melsoft MaiLab von Mitsubishi soll Unternehmen bei der Digitalisierung ihrer Fertigung und unterstützen und so deren Produktivität steigern. Die neue Lösung ist eine intuitive, bedienerzentrierte Plattform, die KI nutzt, um Abläufe automatisch zu verbessern. Sei es Abfallvermeidung durch geringere Ausschussmengen, weniger Stillstandszeiten durch vorbeugende Wartung oder Senkung des Energieverbrauchs durch Prozessoptimierung.

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.