10x schnelleres teil-automatisiertes Labeln von AI-Trainingsbildern

10x schnelleres teil-automatisiertes Labeln von AI-Trainingsbildern
Deep-Learning-Verfahren zur Identifikation und Klassifizierung von Objekten erfordern im Regelfall eine große Anzahl von gelabelten Bildern als Trainingsdaten. Das Startup DataGym.ai bietet eine Online-Workbench, mit der das Labeln von Bildern teil-automatisiert bis zu 10x schneller durchgeführt werden kann.

AI-basierte Bildverarbeitung hat in den letzten Jahren rasant an Bedeutung gewonnen. Grundlage solcher Lösungen bilden CNNs, die initial oft mit tausenden oder zehntausenden von gelabelten Bildern (mit sowohl Gut- als auch Schlecht-Fällen) trainiert werden müssen. Das manuelle Labeln einer solchen Vielzahl von Bildern ist ein aufwändiger, stupider und teurer Prozess, der teilweise bis zu 50% des Zeitaufwands in Machine Learning-Projekten beansprucht. Entsprechend können mit beschleunigenden Label-Tools große Einsparungen hinsichtlich Kosten und Time-to-Market erzielt werden.

Beschleunigtes Labeln mit AI

Das Startup DataGym.ai bietet hierfür eine Online-Workbench für Data Scientists und Machine Learning-Teams an, um Bilder (und zukünftig auch Videos) semi-automatisiert bis zu 10x schneller zu labeln als bei manuellem Vorgehen. Die Grundlage bildet der Einsatz von AI und Machine Learning: Vortrainierte, AI-powered Label-Funktionen unterstützen den Anwender beim Labeln und Annotieren von Objekten in den Bildern. Beispielsweise werden die Umrisse von komplexen Objekten automatisiert mit einem Polygon umrandet, der Anwender hat anschließend – falls notwendig – noch die Möglichkeit einzelne Polygonpunkte manuell nach zu justieren. Die Online-Workbench bietet darüber hinaus noch einiges mehr: Sie ist eine End-to-End Plattform zum Erstellen, Verwalten, Labeln, Annotieren, Klassifizieren und Exportieren von Trainingsdaten für AI-Bildverarbeitungssoftware. Die einfach zu bedienende Plattform ist für den Einsatz von Teams jeder Größe, als auch für einzelne Benutzer konzipiert. Typische Anwender sind Data Scientists, Machine Learning-Experten, Ingenieure, Entwickler und Team-Verantwortliche.

Bild: DataGym.ai | eForce21 GmbH
Bild 2 | Truck aus der Vogelperspektive: Schritt 1 Auswahl des Trucks durch Einrahmen, 
Schritt 2: automatisches Labeln der Truck-Umrisse mit einem Polygon
Bild 2 | Truck aus der Vogelperspektive: Schritt 1 Auswahl des Trucks durch Einrahmen, Schritt 2: automatisches Labeln der Truck-Umrisse mit einem PolygonBild: DataGym.ai | eForce21 GmbH

Funktionen im Detail

Projekte und DataSets bilden die Grundlage der Datenverwaltung. Lädt ein Anwender Bilder in das Online-Tool hoch, so können diese in DataSets gruppiert werden. Ein DataSet umfasst eine Menge von Bildern und kann als Ausgangsmaterial in beliebig vielen Projekten verwendet werden. Somit können die Bilder beliebig oft gelabelt bzw. annotiert und für unterschiedliche Trainingsdatensätze verwendet werden. Die Grundlagen für das Labeln von Bildern und Objekten werden in einer sogenannten Label Configuration festgelegt. Diese umfasst sowohl Geometries, als auch Object Classes. Mit einer Geometry wird festgelegt, wie die zeichnerische Kennzeichnung bzw. Umrandung eines Objektes erfolgt. Beispiele hierfür sind: Polygon, Rectangle, Line, Point. Mit einer Object Class wird ein Objekt klassifiziert, d.h. einer Klasse zugeordnet. Damit erhält das Objekt eine Bedeutung bzw. einen Typ. Beispiele im Straßenverkehr könnten sein: Auto, Lkw, Motorrad, Fußgänger, etc. Die Klassifizierungen können bis zu mehreren Ebenen verschachtelt und damit mit Sub-Classes versehen werden. Beispielsweise könnten Autos durch ihre Bauweise subklassifiziert werden, also Sedan, SUV, Pickup, etc. Neben den Objekten können auch ganze Bilder annotiert und klassifiziert werden. Hierzu können in der Label Configuration Klassifizierungs-Fragen hinterlegt werden. Beispielsweise unter welchen Lichtverhältnissen oder zu welcher Tageszeit das Bild aufgenommen wurde.

Ist ein Projekt angelegt und sind diesem eine Label Configuration sowie ein oder mehrere DataSets zugeordnet, so kann mit dem Labeln begonnen werden. Zur einfachen Handhabung wird hierzu pro zu labelndem Bild jeweils eine Task angelegt. Eine Task entspricht also der Aufgabe, ein Bild und die darin enthaltenen Objekte zu labeln und zu klassifizieren. Eine Task ist mit einem Status (z.B. waiting, in progress, completed, skipped, reviewed) versehen und durchläuft je nach Bearbeitungszustand unterschiedliche Stati eines Life Cycles (State Machine). Die Tasks können unterschiedlichen Mitarbeitern eines Teams zugeordnet werden, sodass große Projekte parallelisiert und somit schnell und effizient abgearbeitet werden können.

Beim Labeln eines Bildes und der darin enthaltenen Objekte hat der Anwender in einem übersichtlichen Workspace die Möglichkeit, mit den AI-unterstützen Funktionen teil-automatisiert zu arbeiten oder Geometrien und Klassifizierungen händisch vorzunehmen. Die in einem Projekt erstellten Trainingsdaten können letztlich als JSON-Datei heruntergeladen und zum Training von Machine Learning-Modellen (CNN) verwendet werden. Darüber hinaus stellt die Online Workbench APIs bereit, über die die Funktionen der Plattform automatisiert genutzt und in z.B. Python Entwicklungs-Workflows von Anwendern integriert werden können. Die Online-Workbench wird in der Grundversion kostenfrei auf der Homepage angeboten. Über den aktuellen Funktionsumfang hinaus sind zukünftig weitere Ausbaustufen der Plattform mit interessanten Features geplant, z.B. die Funktionen Video-Labeling und 3D-Labeling.

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.