Neuer Machine-Learning-Ansatz für Beschaffung und Produktion

Die Mehrkosten durch teure Zukäufe sinken, wenn ein Unternehmen Wiederbeschaffungszeiten präziser prognostizieren kann.
Die Mehrkosten durch teure Zukäufe sinken, wenn ein Unternehmen Wiederbeschaffungszeiten präziser prognostizieren kann.Bild: Inform GmbH

Durchschnittlich bis zu 70% genauere Prognosen von Liefer- und Wiederbeschaffungszeiten – das will der neue Machine Learning (ML) Ansatz des Aachener Softwareentwicklers Inform bieten.

Die Diskrepanz zwischen dem von Lieferanten zugesicherten und dem tatsächlichen Liefertermin ist in vielen Branchen außerordentlich groß. „Wir haben die Datenhistorie vieler Unternehmen analysiert. In zwei Drittel der Fälle wurde der Termin nicht eingehalten“, berichtet Dr. Marco Schmitz, der im Team „New Solutions“ bei Iinform an der ML-Lösung mitgewirkt hat. Ebenso sind in ERP-Systemen meist nur ungenaue Schätzungen der Wiederbeschaffungszeiten als Stammdaten hinterlegt, deren Pflege manuell nur mit hohem Aufwand vonstattengeht.

In ersten Studien konnte der Algorithmus die Abweichung des Liefertermins von 25 Tagen auf 12 Tage reduzieren. „Das schmälert die Unsicherheit und das Risiko so stark, dass deutlich weniger Deckungskäufe nötig sind“, sagt Schmitz. Solche Deckungskäufe bei Plan-B-Lieferanten oder Konkurrenzunternehmen kosten nicht selten mehrere Millionen Euro pro Jahr und schmälern vor allem in Handelsunternehmen die Margen. Sinkt die Unsicherheit, reduzieren sich gleichzeitig auch diese Kosten. Mit der neuen ML-Lösung will Inform in Zusammenarbeit mit den hauseigenen Datenspezialisten des Inform DataLab hier Abhilfe schaffen. Sie ist sowohl als unabhängiges Modul für beliebige ERP-Systeme verfügbar als auch integriert in bestehende Systeme zur Bestandsoptimierung (ADD*ONE) und Produktionsplanung (FELIOS).

Thematik: Newsarchiv
| News

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.