Konsortialführer beim Digitalisierungsprojekt Aribic

Bild: Still GmbH

Wenn Fahrerlose Transportfahrzeuge (FTF) durch Lager- oder Produktionshallen navigieren, werden sie zu wahren Datensammlern. Daten, die jedoch sofort wieder gelöscht werden. „Das ist eine riesige Verschwendung“, meint Bengt Abel, Projektleiter bei Still. Das internationale Forschungsprojekt Aribic (Artificial Intelligence-Based Indoor Cartography) will deshalb Methoden aufzeigen, mit denen sich diese wertvollen Informationen gewinnbringend nutzen lassen.

Die über Sensoren und Kameras ermittelten Daten können in der Aribic-Cloud dazu verwendet werden, 3D-Karten von Lagerhäusern oder Produktionsanlagen zu erstellen, die jederzeit auf dem aktuellen Stand sind. „Über diese aktuellen Sensordaten erzeugen wir einen lebenden digitalen Zwilling der Umgebung und können damit relevante Informationen quasi in Echtzeit darstellen und teilen“, beschreibt Bengt Abel die Grundidee des Forschungsprojekts. Im Gegensatz zur heutigen Methode, bei der nach einer Momentaufnahme ein starres 3D-Abbild der Umgebung angefertigt wird, bleiben die von der Aribic-Plattform generierten Abbilder dynamisch und stets aktuell. „Wenn der Stapler oder das FTF durch die Umgebung fährt, erfasst deren Sensorik selbst kleinste Veränderungen und leitet diese an die Aribic-Plattform weiter. In der auf künstlicher Intelligenz basierenden Innenraumkartografie werden diese Änderungen, z.B. ein verschobenes Regal oder eine neu abgestellte Palette, sofort berücksichtigt und in das System zurückgespielt“, so der Still Experte.

Enormer Nutzen für die Anwenderinnen und Anwender

Benötigt werden hochauflösende 3D-Karten mit semantischen Informationen zunächst einmal für die Lokalisierung und Navigation von Fahrerlosen Transportfahrzeugen in ihrer Arbeitsumgebung. Betreiberinnen und Betreiber von Lager- oder Produktionshallen wissen so jederzeit, wo sich ihre Fahrzeuge befinden. Mit dieser Information wiederum lässt sich die Warenhaus- oder Fabrikplanung optimieren. Z.B. ist eindeutig erkennbar, in welchen Bereichen des Lagers viel oder wenig gefahren wird oder welche Gänge häufiger zugestellt und damit blockiert sind. Mit diesen Ergebnissen lassen sich Regale (zunächst) virtuell verschieben oder Produktionsflächen neu anordnen. Bengt Abel: „Anwenderinnen und Anwender können mit der neuen Möglichkeit, die Arbeitsumgebung permanent aufzunehmen, ihre Lager und Produktionshallen künftig optimal planen und ausnutzen. Erstmals würden sie einen detaillierten Einblick erhalten, was überhaupt in ihren Warenhäusern passiert.“ Nach Aussage des Still-Experten sind noch unzählige weitere Anwendungsfelder denkbar, die auf den Aribic-Ergebnissen aufbauen: „Wir haben bereits heute großartige Ideen. Ich bin mir aber ganz sicher, dass in Zukunft noch sehr viele hinzukommen werden.“

Das Aribic-Projekt

Gestartet ist das Aribic-Projekt im März dieses Jahres. Der Abschluss ist für das vierte Quartal 2023 angedacht. An dem internationalen Forschungsvorhaben sind neben dem Konsortialführer Still noch das Karlsruher Institut für Technologie (KIT), die Universität Toronto mit dem Stars-Labor und der kanadische Sensorhersteller LeddarTech beteiligt. Gefördert wird das Projekt durch das deutsche Bundesministerium für Wirtschaft und Energie (BMWi) und das Industrial Research Assistance Program des kanadischen National Research Council (NRC IRAP). Der Hamburger Intralogistikanbieter Still wird dafür sein Erfolgsmodell OPX iGo neo ins Rennen schicken – einen mit Sensorik und Kameratechnik bereits bestens ausgestatteten autonomen Kommissionierer. „Jetzt zahlt sich unser frühzeitiges Engagement in den Bereichen Automatisierungstechnik, Robotik und Digitalisierung aus. Seit Jahren arbeiten wir bereits an einer Vielzahl von Sensorlösungen für unsere Flurförderzeuge, die jetzt nach und nach in die Serie einfließen. Eine wichtige Voraussetzung, um sich überhaupt an einem derartigen Projekt beteiligen zu können“, wie Bengt Abel betont.

Thematik: Newsarchiv
| News
Still GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige