Ende-zu-Ende Technologie-Stack mit Funktechnik

Unzählige IoT-Sensoranwendungen streamen Rohdaten in die Cloud, um die dort vorhandenen Möglichkeiten der Datenverarbeitung zu nutzen. Neben den Sicherheitsbedenken hat dieser zentrale Lösungsansatz im industriellen Umfeld auf Grund der Bandbreiten-, Latenz- und Verfügbarkeitsprobleme aber auch funktionale Nachteile. Ein Cobot Voice/Gesture Interface für die Zusammenarbeit zwischen Menschen und Robotern, Qualitätssicherung per Machine Vision, Condition Monitoring mit Echtzeit-Anomalieerkennung und fahrerlose Transportsysteme (FTS) lassen sich mit einer einfachen Sensor-to-Cloud-Verbindung nicht realisieren. Hier ist zusätzlich auch eine Datenauswertung vor Ort erforderlich.
Bild: SSV Software Systems GmbH

Um die Entwicklung KI-basierter Funksensor-Edge-Anwendungen zu vereinfachen, hat SSV mit dem WSEI/154A den weltweit ersten Ende-zu-Ende Technologie-Stack mit einer 868MHz-Funktechnik gemäß IEEE802.15.4 entwickelt. Als Sensing Endpoint gehört ein Evaluation Board mit einem ARM Cortex M0+ SoC und integriertem Sub?GHz-Funktransceiver sowie RIOT als Embedded-Betriebssystem zum Lieferumfang. Die zahlreichen Gateway-Softwarefunktionen sind auf ein Debian-Linux abgestimmt. Sie werden durch eine vorzertifizierte Funkhardware als Auflötmodul ergänzt. Für den Cloud-Einsatz gehören verschiedene Jupyter-Notebooks zum Technologie-Stack. Sie unterstützen die MQTT-Kommunikation mit dem Gateway sowie das Training neuronaler Netze mit TensorFlow. Die dabei erzeugten Machine-Learning-Modelle lassen sich im Edge-Inferenzbetrieb auf einer Ressourcen-limitierten Gateway-Hardware nutzen.

Der WSEI/154A ermöglicht OEMs die Realisierung hochwertiger Daten-basierter Lösungen mit Funksensoren, verschiedenen Kommunikationsprotokollen, Machine Learning, PKI-basierter Cybersecurity inklusive Authentifizierung sowie sichere Software-Updates Over-The-Air (OTA) bis in den Sensor, ohne zuvor tiefgehende Spezialkenntnisse in den einzelnen Themenbereichen aufbauen zu müssen.

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.