Interview mit Dr. Maximilian Beinhofer, Head of Cognitive Systems Development, TGW

Künstliche Intelligenz (KI) und Machine Learning halten in immer mehr Wirtschaftsbereichen Einzug, auch in der Intralogistik. TGW hat beispielsweise den selbstlernenden Pickroboter Rovolution entwickelt. Welche Vorteile das preisgekrönte System bietet und wie mithilfe von KI das Fulfillment Center der Zukunft optimiert werden kann, erklärt im Interview Dr. Maximilian Beinhofer, Head of Cognitive Systems Development bei TGW.
 Dr. Maximilian Beinhofer leitet den Bereich Cognitive Systems Development im Headquarter der TGW Logistics Group. Er studierte Mathematik an den Universitäten Aachen sowie Freiburg und promovierte dort im Fachbereich Informatik in Probabilistischer Robotik.
Dr. Maximilian Beinhofer leitet den Bereich Cognitive Systems Development im Headquarter der TGW Logistics Group. Er studierte Mathematik an den Universitäten Aachen sowie Freiburg und promovierte dort im Fachbereich Informatik in Probabilistischer Robotik.Bild: TGW Logistics Group GmbH

Herr Beinhofer, was genau versteht man unter Machine Learning?

Dr. Maximilian Beinhofer: Mit Machine Learning lassen sich rund 95 Prozent aller Anwendungen von Künstlicher Intelligenz zusammenfassen. Maschinelles Lernen ist ein Überbegriff für die Generierung von Wissen aus Erfahrung. Basis sind Algorithmen, die nicht nach einer fest einprogrammierten Regel vorgehen, sondern bei denen nur die grundlegende Struktur vorgegeben ist. Die Algorithmen werden trainiert, um Muster zu erkennen und Vorhersagen treffen zu können.

Machine Learning setzt also auf Erfahrungswerte. Basierend auf historischen Daten lernt das System mit neuen – noch unbekannten – Daten eigenständig umzugehen. Der Algorithmus wird kontinuierlich verfeinert, lernt dazu und kann sich selbstständig und dynamisch auf neue Situationen einstellen. Darin liegt der Schlüssel zu gesteigerter Effizienz in der Intralogistik – etwa beim automatischen Kommissionieren.

Was sind die Vorteile der Technologie?

Dr. Beinhofer: Künstliche Intelligenz und ihre Teilbereiche sind Wachstumstreiber in vielen Branchen. In der Supply Chain schlummern an vielen Stellen Informationen, die großes Potenzial mitbringen, um Prozesse effizienter zu gestalten. Das betrifft die Performance einer gesamten Anlage ebenso wie von einzelnen Elementen. Durch den Einsatz von Machine Learning profitieren Unternehmen von effizienteren Abläufen. Bestellungen können beispielsweise fehlerfrei und mit maximaler Geschwindigkeit kommissioniert und an Kunden versendet werden.

In welchen Bereichen beschäftigt sich TGW mit künstlicher Intelligenz?

Dr. Beinhofer: Das Einsatzspektrum von Künstlicher Intelligenz ist breit gefächert. Wir wollen Machine Learning gezielt dort einsetzen, wo Unternehmen und deren Kunden den größten Nutzen daraus ziehen können. Das ist überall dort der Fall, wo es darum geht, Muster in großen Datenbeständen zu erkennen und Prozesse und Abläufe zu optimieren. Daher betrachten wir bei TGW Machine Learning aus drei Perspektiven: auf Objekt-Ebene, auf Materialflussebene und auf Maschinen-Ebene.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.