Machine Learning in der Fertigungs-IT

Machine Learning in der Fertigungs-IT

Manufacturing Analytics und KI

Bild: ©nd3000/stock.adobe.com / MPDV Mikrolab GmbH

Um wettbewerbsfähig produzieren zu können, brauchen Fertigungsunternehmen bestmögliche Transparenz. Denn nur wer weiß, wie es im Shopfloor gerade läuft, kann an den geeigneten Stellschrauben drehen und die Prozesse optimieren. Über die Jahre haben sich Werkzeuge wie Kennzahlen und deren Darstellung in Dashboards als nützlich herauskristallisiert. Heutzutage braucht es aber deutlich mehr – z.B. hält künstliche Intelligenz immer häufiger Einzug in die Fabrikhallen.

Klassische Anwendungen

Bisher gehören beispielsweise Auswertungen, Dashboards und Reports genauso wie Kennzahlen zu den gängigen Analytics-Werkzeugen. Viele dieser Anwendungen sind Bestandteil eines Manufacturing Execution Systems (MES) wie Hydra von MPDV. Beliebte Auswertungen sind beispielsweise die Ausschussstatistik, das Maschinenzeitprofil, der OEE-Report oder auch die klassische Regelkarte in der Qualitätssicherung. In allen Fällen entsteht der Mehrwert dadurch, dass Hydra Informationen darstellt, die aus erfassten Rohdaten berechnet bzw. aggregiert wurden. Im Sinne einer ‚Rückspiegelbetrachtung‘ spricht man hier auch von Descriptive Analytics.

Self Service Analytics

Oft gehen die Anforderungen von Fertigungsunternehmen über standardisierte Kennzahlen und vorgefertigte Auswertungen hinaus. Insbesondere wenn größere Datenmengen zur Analyse zur Verfügung stehen, bietet es sich an, auf Methoden des Self Service Analytics zurückzugreifen, um so eine individuelle Ursachenforschung zu betreiben. Der Klassiker hierfür ist die Pivot-Tabelle, die viele aus Excel kennen und die auch im MES Hydra zum Einsatz kommt. Ein Praxisbeispiel ist die Fehlerschwerpunktanalyse. Die flexible Anordnung von Datenfeldern in Zeilen und Spalten sowie der Einsatz von Filtern und Korrelationsfunktionen ermöglichen eine Eingrenzung von Daten auf relevante Werte. So kann jeder Anwender selbst entscheiden, wie seine Auswertung aussieht – er bedient sich im wahrsten Sinne des Wortes selbst und nutzt die angebotenen Werkzeuge, um an sein Ziel zu gelangen. Sollen Daten aus unterschiedlichen Quellen miteinander korreliert werden, lässt sich das MES-Cockpit von MPDV nutzen, welches zur Visualisierung auf Qlik-Technologie zurückreift.

Seiten: 1 2 3Auf einer Seite lesen

MPDV Mikrolab GmbH
www.mpdv.com

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.