Ausreißererkennung für Einzelteil- und Kleinserien

Maschinen fehlerlos einfahren

Bei steigender Variantenvielfalt wirken sich Probleme beim Einfahren immer deutlicher auf die Wirtschaftlickeit aus. Am IFW arbeiten Forscher daran, mit KI-basierter Anomalie-Detektion Werkzeugmaschinen auf Fehler wie Ratterschwingungen zu untersuchen, die teils vorher sogar unbekannt waren.
Transfer von Wissen zwischen Maschinen für die Überwachung
Transfer von Wissen zwischen Maschinen für die ÜberwachungBild: IFW

Durch die Auswertung von Prozessdaten aus Werkzeugmaschinen können Fehler etwa beim Einfahren früh erkannt werden. Durch die Digitalisierung der Fertigung stehen dafür immer größere Datenmengen zur Verfügung. Um die Datenqualität zu verbessern, werden zudem oft Sensorsysteme in die Maschinen integriert. Die Vielzahl der erfassten Prozesssignale eröffnet dabei neue Möglichkeiten für die Überwachung. So können mit maschinellem Lernen (ML) auch komplexe Zusammenhänge und Muster aus großen Datenmengen abgebildet werden. Weit verbreitete überwachte ML-Methoden benötigen zum Lernen sowohl Daten von fehlerfreien Prozessen als auch Daten von Fehlerfällen. Um zu lernen, benötigen die Algorithmen zudem Informationen darüber, wo sich welche Fehlerfälle im Datensatz befinden. In der Produktion sind allerdings nicht alle Fehlerfälle im Vorhinein bekannt und Daten zu den einzelnen Fehlern liegen häufig nicht in ausreichender Menge vor. Deshalb ist überwachtes Lernen für die Detektion, insbesondere von unbekannten Fehlern, nur bedingt für den industriellen Einsatz geeignet.

Training ohne Vorwissen

Der Anomalie-Detektion-Ansatz aus dem Gebiet des unüberwachten Lernens benötigen hingegen kein solches Vorwissen. Durch das Training mit Daten aus fehlerfreien Prozessen erlernt die Anomalie-Detektion charakteristische Muster und Zusammenhänge in den Signalen. Die trainierten Modelle erkennen Abweichungen (Anomalien) von den gelernten Mustern und können somit sogar unbekannte Prozessfehler detektieren. Das Institut für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover (IFW) erforscht daher den Einsatz der Anomalie-Detektion zur Überwachung der Einzelteil- und Kleinserienfertigung. Dabei werden die Prozesse aus unterschiedlichen Perspektiven betrachtet. Auf der untersten Ebene, der Lupenperspektive, stehen einzelne Signalausschnitte. Signalausschnitte fokussieren kurzweilige Effekte, etwa ein frequenzabhängiges Rattern. Die Vogelperspektive umfasst ganze Prozesssegmente, etwa eine einzelne Bohrung oder ein einzelner Längsdrehprozess. Über den Vergleich einzelner Segmente können auch langsame Veränderungen, beispielsweise durch Werkzeugverschleiß, erkannt werden. Die Betrachtung des gesamten Segments ermöglicht eine bessere Einordnung von Signalveränderungen, wodurch Fehlalarme vermieden werden. Die Übertragung des gelernten Wissens zwischen unterschiedlichen Maschinen wird in der Satellitenperspektive adressiert.

Bild 1: Ratterdetektion durch eine One-Class-SVM
Bild 1: Ratterdetektion durch eine One-Class-SVMBild: IFW

Die Lupenperspektive

Selbsterregte Ratterschwingungen sind eine große Herausforderungen in der Zerspanung, da sie die Oberflächenqualität der Werkstücke verschlechtern sowie zu einem erhöhten Werkzeug- und Komponentenverschleiß führen. Bisher werden zur Erkennung von Ratterschwingungen hauptsächlich schwellwertbasierte Methoden eingesetzt. Dabei werden Merkmale im Zeit- oder Frequenzbereich einzelner Signale berechnet. Sobald der Wert eines Merkmals den vorab definierten Schwellwert überschreitet, wird Rattern detektiert. Doch wie sieht ein geeigneter Schwellenwert aus? Ist er zu niedrig gewählt, kommt es zu Fehlalarmen, während ein zu hoher Wert dazu führt, dass Fehler erst zu spät oder gar nicht erkannt werden. Zudem können nur einzelne Merkmale betrachtet werden, die Zusammenhänge zwischen unterschiedlichen Signalen und Merkmalen gehen verloren.

Alle Signale zusammenführen

Um diesen Herausforderungen zu begegnen, wurde am IFW eine One-Class-Support-Vector-Maschine (SVM) zur Ratterdetektion eingesetzt. Diese kann Informationen aus unterschiedlichen Datenquellen zu einem sogenannten Score zusammenzuführen und Schwellwerte selbständig bestimmen. Als Eingangsgrößen für die SVM wurden die Signale von drei am Spindelschlitten applizierten Halbleiter-Dehnungsmessstreifen (H.-DMS) und die Antriebsströme der Maschinenachsen verwendet. Trainiert wurde die SVM mit den Daten von 15 ratterfreien Flankenfräsprozessen in Aluminium mit variierenden Vorschubgeschwindigkeiten, Schnitttiefen, -breiten und Drehzahlen. Durch eine Stufe im Werkstück wird nun die Schnitttiefe erhöht, sodass Ratterschwingungen entstehen. Die SVM erkennt das Rattern bevor Rattermarken auf dem Werkstück zu sehen sind. Plötzlich auftretende Prozessfehler wie Ratterschwingungen können also in der Lupenperspektive auch ohne aufwendige Berechnungen von Merkmalen und die manuelle Bestimmung von Schwellwerten erkannt werden.

Seiten: 1 2 3Auf einer Seite lesen

Institut für Technische Verbrennung

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige