Künstliche Intelligenz auf Werksebene

Betriebsstörungen in der Glaskugel vorhersehen

Produzierende Unternehmen könnten künftig die Analyse-Funktionen ihrer Fertigungssoftware etwa dazu nutzen, Ausschuss und Arbeitsplatzstörungen vorherzusagen, um dies mit den passenden Gegenmaßnahmen zu verhindern. Ein solches KI-getriebenes Predictive-Analytics-System wird gerade in einem praxisnahen Forschungsprojekt weiterentwickelt.
Bild: ©goodluz/stock.adobe.com

Transparenz ist der elementare Bestandteil einer effizienten Fertigungsumgebung. Sie durchleuchtet vergangene und aktuelle Abläufe, zeigt Potenziale auf und hilft Industriebetrieben dadurch bei der Optimierung ihrer Wertschöpfung. Mit der Digitalisierungswelle in die Fertigung steigen allerdings auch die Anforderungen an eine effiziente Verarbeitung der Datenmengen, die daraus gewonnen werden – viele davon idealerweise in Echtzeit. Diese Datenmengen in Kombination mit neuen Erkenntnissen rund um die Themen ‚künstliche Intelligenz‘ und ‚Machine Learning‘ erlauben zunehmend den viel zitierten Blick in die Glaskugel mit entsprechenden zuverlässigen Vorhersagen.

Data Analytics in der Produktion

Eine Funktionalität, die zeitgemäße MES-Lösungen schon lange bieten, bekommt im Zuge der oben erwähnten Digitalisierungswelle und der Etablierung des IIoT eine ganz neue Bedeutung: Predictive Maintenance, die vorausschauende Instandhaltung. Das IIoT liefert datentechnisch ein sehr genaues Bild des Ist-Zustandes. Algorithmen, Big-Data-Anwendungen und KI erkennen gewisse Muster in diesen Informationen. So kommt es zu Vorhersagen über zu erwartende Zustände und Trends. Laut Deloitte erzeugen Geschäftstätigkeiten also die Daten, „die durch Analyse wieder zu handlungsrelevanten Erkenntnissen, neuen Entscheidungen und vielleicht sogar zu neuen Geschäftstätigkeiten“ führen können.

Aussagekräftige MES-Daten

Der im Predictive-Analytics-Forschungsprojekt involvierte Universitätsprofessor Dr. Alfred Taudes, Wirtschaftsuniversität Wien, Department für Informationsverarbeitung und Prozessmanagement, Institut für Produktionsmanagement, kennt die Stärken von Predictive Analytics: „Mittels Predictive Analytics können Fertigungsunternehmen heute durch Sensoren generierten Datenmengen sinnvoll für eine bessere Planung einsetzen. Eine genauere Prognose des Ausschussanteils etwa führt zu verbesserter Kapazitätsauslastung, Termintreue und geringeren Lagerständen.“ Wie MES-Daten sinnvoll im Rahmen von Predictive Analytics eingesetzt werden können, beschreibt Taudes so: „Die in der Vergangenheit im MES erfolgten Aufzeichnungen zu Ausschuss, Maschinenausfall, Störungen und Produktqualität im jeweiligen Umfeld, etwa Maschine, Personal, Umwelt, Material, Auftrag und Zeit, geben unter Einsatz geeigneter Methoden Aufschluss über Konstellationen, in denen diese Probleme gehäuft auftreten. Diese Muster werden bei der Vorhersage der Qualitätsmetriken bei künftigen Planungen angewandt.“ Die meisten Daten seien also bereits vorhanden, so Taudes weiter, es fehle lediglich an einer passenden Analyse und bedienergerechten Integration in den Planungsprozess. Neben den Prozessdaten könnten beim Qualitätsmangement auch textuelle oder visuelle Informationen relevant sein. „Hier stehen wir erst am Anfang der Analyse, insbesondere die Integration heterogener Datenbestände ist ein aktives Forschungsgebiet.“

Ausschüsse und Arbeitsplatzstörungen

Thomas Krainz vom MES-Hersteller Industrie Informatik ergänzt: „Erfolgsentscheidend ist am Ende die Anpassung all dieser Technologien und Funktionen an die jeweilige Datensituation und vor allem die Erwartungshaltung der Kunden. Künstliche Intelligenz und Predictive Analytics sind keine Wunderheiler. Sie sind weder besser noch intelligenter in ihren Aufgaben als ein Mensch. Ihr Vorteil liegt in der Nachbildung von menschlichem Know-how – und das bei hoher Geschwindigkeit und außerdem rund um die Uhr. Daraus leiten sich viele Möglichkeiten ab.“ Konkret gemeint sind damit Prognosen zu relativen Ausschüssen und Arbeitsplatzstörungen in Folgeschichten sowie zu den verschiedenen Qualitätsstatus nach Fertigungsschritten. Alleine mit diesen Informationen könne man verborgene Einsparungspotenziale aufdecken und die Effizienz am Shopfloor massiv optimieren, so Krainz.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.