Teststand arbeitet mit KI

Berechenbare Leistung in unberechenbarer Welt

Warum fallen Lager aus? Um das zu verstehen, untersuchen die SKF Experten diese Komponenten im Labor und im Praxiseinsatz. Mit dem momentan in Bau befindlichen Brave-Teststand sowie dem Einsatz von künstlicher Intelligenz und Big-Data-Analysen findet SKF neue Ansätze und versorgt die Kunden mit neuen Mitteln im Kampf gegen ungeplante Stillstandszeiten.
 Auf den neuen Brave-Prüfständen im Testzentrum simuliert SKF alle Arten von möglichen Bedingungen, wie sie in der Praxis zu finden sind.
Auf den neuen Brave-Prüfständen im Testzentrum simuliert SKF alle Arten von möglichen Bedingungen, wie sie in der Praxis zu finden sind.Bild: SKF GmbH

„Kunden kommen zu uns, weil wir sie mit unseren Produkten und Dienstleistungen dabei unterstützen, zuverlässiger, nachhaltiger und leistungsstärker zu arbeiten“, sagt Bernie Van Leeuwen. Er ist Leiter des SKF Research & Technology Developments. „In der Regel bekommen sie auch, was sie suchen.“ Mehr als 90 Prozent der Lager halten länger als die Maschinen, in die sie eingebaut sind.

„Wir konzentrieren uns aber auch stark auf die Lager, die irgendwann im Einsatz ausfallen“, erklärt Van Leeuwen. „So haben wir über die Jahre Modelle entwickelt, mit denen wir deren Lebensdauer unter bestimmten Betriebsbedingungen ermitteln können, bevor erste Ermüdungserscheinungen auftreten.“ In der Praxis sieht das jedoch meist anders aus. „Kamen die defekten Bauteile von den Kunden an uns zurück, stellten wir durch Analysen fest, dass sich in neun von zehn Fällen die erwarteten Betriebsbedingungen geändert hatten“, sagt Van Leewen. „Dazu gehören Schmierstoffmangel, Verunreinigung, Korrosion oder Schäden durch Streuströme.“ Da die Maschinen auch unter schwierigen Bedingungen funktionieren müssen, lässt sich dies nie ausschließen. „Wenn es uns jedoch gelingt, sie sicher vorherzusagen, können wir ihre Folgen verringern“, erklärt der Experte. „Es ist wesentlich wirtschaftlicher, ein Lager während einer geplanten Überholung auszutauschen, als eine Fertigungsstraße für Notreparaturen anzuhalten.“ Deshalb arbeitet SKF daran, die Vorhersagbarkeit zu optimieren.

Erkennen, Diagnose und Prognose

Gibt es ein Problem oder besteht die Möglichkeit eines Problems mit meiner Maschine? Welche Ursache liegt dem Problem zugrunde? Kann ich meine Maschine bis zum nächsten geplanten Wartungsintervall weiter betreiben? Kann ich irgendetwas tun, um sie am Laufen zu halten? „Um diese Fragen zu beantworten, müssen wir oft ganz neue Technologien heranziehen“, beschreibt der SKF Experte. „Oft hilft es aber auch, gut etablierte Konzepte auf neue Art und Weise anzuwenden.“ Das gilt z.B. für Lagerprüfungen.

In ihren Laboren betreibt SKF weltweit zahlreiche Lagerprüfstände. Hier laufen die Produkte bis zum Totalausfall. Die Techniker bekommen dadurch ein besseres Verständnis für Ausfallmechanismen und können so mathematische Modelle verifizieren. „Diese Prüfverfahren sind recht simpel“, sagt Van Leeuwen. „Wir lassen den Prüfstand so lange laufen, bis wir ein Problem beim Lager erkennen. Für unsere Prognosen benötigen wir aber eine andere Art von Prüfung: Sie muss dort ansetzen, wo eine herkömmliche Prüfung endet.“ Damit kann SKF analysieren, wie sich ein Schaden in einem Lager entwickelt und wie schnell sich kleine Fehler zu großen Problemen auswachsen.

Ein neues Testzentrum entsteht

Dazu errichtet SKF derzeit ein Technologiezentrum im niederländischen Houten. „Die Prüfstände im neuen Zentrum tragen den Namen ‚Bearing Rigs for Accelerated Verification Experiments‘ (Brave). Sie simulieren die Arten von möglichen Bedingungen, wie sie in der Praxis zu finden sind“, erklärt Van Leeuwen. „Auf unseren Prüfständen können wir bewusst Lagerschäden erzeugen, beispielsweise durch Korrosion, Schmierstoffmangel, Verunreinigung oder elektrische Ströme. Zudem können wir beobachten, wie sich verschiedene Belastungen und Drehzahlen auf die Ausbreitung der Lagerschäden auswirken.“

Sehr viel Raum bei SKF nehmen aktuell die Themen Künstliche Intelligenz (KI) und Maschinelles Lernen ein. Im vergangenen Jahr hat SKF ihre KI-Gruppe weiter verstärkt. Inzwischen passen die Spezialisten Systeme und Prozesse in der gesamten Organisation daraufhin an. „Z.B. können unsere neuesten Prüfstände mit einer höheren Frequenz wesentlich mehr Daten erfassen als ihre Vorgänger“, beschreibt Van Leeuwen. „Wir speichern die Informationen in unserer Cloud, damit Teams weltweit darauf zugreifen können. Sie können so ihre Algorithmen trainieren und neue Ideen ausprobieren.“ Außerdem wenden sie auf dieser Basis automatische Analysen an. „Ein sehr gutes Beispiel hierfür ist ein laufendes Projekt aus unserem Rekonditionierungsgeschäft“, sagt der Experte. Stahlwerke setzen in ihrer Fördertechnik viele Lager ein. Aufgrund der Größe und Kosten der Bauteile eignen sie sich zur Rekonditionierung. Doch was ist, wenn ein Fehler zu lange nicht erkannt wird, ist es dann überhaupt noch möglich? „Bisher konnten wir das erst feststellen, wenn das Lager bei uns eintraf“, schildert er die Ausgangssituation. Um einen unnötigen Transport zu vermeiden, erprobt SKF ein automatisches Bilderkennungssystem. Die Lager werden beim Ausbau vom Kunden fotografiert. Das System analysiert anschließend ihren Zustand und stellt eigenständig fest, ob es sich instandsetzen lässt. Der Kunden erhält damit einen klaren Mehrwert, denn er bekommt einen Bericht über die mögliche Ursache des Schadens. „Einer der interessantesten Aspekte der Arbeit mit Big-Data und KI ist die Art und Weise, wie diese sich gegenseitig ergänzen“, sagt Van Leeuwen. „Dank der Kombination aus Daten von unseren neuen Prüfständen, von Sensoren an Kundenmaschinen und von Bildern beschädigter Lager können wir unsere Algorithmen und mathematischen Modelle ständig verfeinern und optimieren.“ Besonders in der Erkennung und Diagnose sind SKF bereits einige Durchbrüche gelungen. Diese Verfahren werden heute schon bei ausgesuchten Kunden eingesetzt. Angesichts der zunehmenden Zuverlässigkeit und Anwendbarkeit der Methoden plant SKF, in den kommenden Monaten und Jahren neue Werkzeuge, Produkte und Dienstleistungen anzubieten.

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige