Wie Sie KI-Anwendungen erfolgreich produktiv setzen

Die industrielle KI-Plattform

Künstliche Intelligenz (KI) und Machine Learning (ML) haben längst die Phase des Hypes überstanden und finden verstärkt Anwendung in diversen Bereichen. Andererseits finden laut einer Studie vom IDC ca. 50% der KI-Projekte noch nicht ihren Weg in die produktive Nutzung und die Schaffung von echten Mehrwerten. Dieser Artikel fasst die Erfahrungen von AIM Agile IT Management aus Kundenprojekten zusammen und stellt die Kernaspekte heraus wie man mit der Etablierung einer Plattform KI-Projekte flexibel, produktiv und zielgerichtet umsetzen kann.

Herausforderungen

  • Die Datengrundlage muss zunächst in eine nutzbare Form skalierbar zur Verfügung gestellt werden
  • Es müssen neben den Software-Lebenszyklen auch die Daten- sowie Modelllebenszyklen genutzt werden
  • Wachsende Vielzahl und Komplexität von Technologien
  • Fehlendes Wissen und KI-Spezialisten
  • Der Weg von lokalen Notebooks zu produktiven Anwendungen
  • Monitoring von KI-Anwendungen im produktiven Betrieb

Der Begriff: KI-Plattform

Eine Plattform muss Entwicklungsteams bei der Umsetzung individueller Projekte maximal unterstützen und das über den gesamten Lebenszyklus. Eine Plattform beinhaltet dabei gut dokumentierte:

  • Zentral zur Verfügung stehende Applikationen – in Form von Oberflächen oder APIs,
  • Konzepte und Standards,
  • Vorgehen sowie
  • Bausteine und Werkzeuge.

Diese sind erstmal unabhängig von der konkreten fachlichen Ausprägung und lassen sich von den Projektteams flexibel erweitern. Eine Plattform darf nur unterstützen, aber die Projektteams nicht in ihrer Flexibilität einschränken. Außerdem muss sie einfach und verständlich einsetzbar sein, da sonst die Akzeptanz der Nutzung sinkt. Die Vorteile: So wird kontinuierlich auf Standardisierung und Konsolidierung aus den Projekten gedrängt und langfristig eine enorme Produktivitätssteigerung erzielt. Gleichzeitig wird die Flexibilität der Projektteams gewahrt und die Abhängigkeit zum internen Plattform-Team minimiert.

Neben den Rollen Product Owner, Software Entwickler und DevOps Engineer werden auch die Rollen Data Engineer, Machine Learning Engineer und Data Scientist in einem KI-Projekt benötigt. Das Spielfeld des Data Engineers liegt in der robusten Verarbeitung und Bereitstellung von Datenbeständen, der Data Scientist ist primär für die KI spezifischen Teile zuständig und der Machine Learning Engineer schlägt die Brücke zwischen Data Science und der klassischen Entwicklung. Beachtet werden muss, dass eine Person im Entwicklungsteam mehrere Rollen übernehmen kann, sogenannte t-Shaped-Skills. Eine KI-Plattform muss nun die Arbeitsweise der einzelnen Rollen unterstützen und die Zusammenarbeit im Team fördern.

Seiten: 1 2 3Auf einer Seite lesen

AIM - Agile IT Management GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige