Wie Sie KI-Anwendungen erfolgreich produktiv setzen

Die industrielle KI-Plattform

Künstliche Intelligenz (KI) und Machine Learning (ML) haben längst die Phase des Hypes überstanden und finden verstärkt Anwendung in diversen Bereichen. Andererseits finden laut einer Studie vom IDC ca. 50% der KI-Projekte noch nicht ihren Weg in die produktive Nutzung und die Schaffung von echten Mehrwerten. Dieser Artikel fasst die Erfahrungen von AIM Agile IT Management aus Kundenprojekten zusammen und stellt die Kernaspekte heraus wie man mit der Etablierung einer Plattform KI-Projekte flexibel, produktiv und zielgerichtet umsetzen kann.

Herausforderungen

  • Die Datengrundlage muss zunächst in eine nutzbare Form skalierbar zur Verfügung gestellt werden
  • Es müssen neben den Software-Lebenszyklen auch die Daten- sowie Modelllebenszyklen genutzt werden
  • Wachsende Vielzahl und Komplexität von Technologien
  • Fehlendes Wissen und KI-Spezialisten
  • Der Weg von lokalen Notebooks zu produktiven Anwendungen
  • Monitoring von KI-Anwendungen im produktiven Betrieb

Der Begriff: KI-Plattform

Eine Plattform muss Entwicklungsteams bei der Umsetzung individueller Projekte maximal unterstützen und das über den gesamten Lebenszyklus. Eine Plattform beinhaltet dabei gut dokumentierte:

  • Zentral zur Verfügung stehende Applikationen – in Form von Oberflächen oder APIs,
  • Konzepte und Standards,
  • Vorgehen sowie
  • Bausteine und Werkzeuge.

Diese sind erstmal unabhängig von der konkreten fachlichen Ausprägung und lassen sich von den Projektteams flexibel erweitern. Eine Plattform darf nur unterstützen, aber die Projektteams nicht in ihrer Flexibilität einschränken. Außerdem muss sie einfach und verständlich einsetzbar sein, da sonst die Akzeptanz der Nutzung sinkt. Die Vorteile: So wird kontinuierlich auf Standardisierung und Konsolidierung aus den Projekten gedrängt und langfristig eine enorme Produktivitätssteigerung erzielt. Gleichzeitig wird die Flexibilität der Projektteams gewahrt und die Abhängigkeit zum internen Plattform-Team minimiert.

Neben den Rollen Product Owner, Software Entwickler und DevOps Engineer werden auch die Rollen Data Engineer, Machine Learning Engineer und Data Scientist in einem KI-Projekt benötigt. Das Spielfeld des Data Engineers liegt in der robusten Verarbeitung und Bereitstellung von Datenbeständen, der Data Scientist ist primär für die KI spezifischen Teile zuständig und der Machine Learning Engineer schlägt die Brücke zwischen Data Science und der klassischen Entwicklung. Beachtet werden muss, dass eine Person im Entwicklungsteam mehrere Rollen übernehmen kann, sogenannte t-Shaped-Skills. Eine KI-Plattform muss nun die Arbeitsweise der einzelnen Rollen unterstützen und die Zusammenarbeit im Team fördern.

Seiten: 1 2 3Auf einer Seite lesen

AIM - Agile IT Management GmbH

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.