Deutschland ist führend bei der Einführung von KI in der Fertigungsindustrie

Deutschland ist führend bei der Einführung von KI in der Fertigungsindustrie Eine neue Studie des Capgemini Research Institute zeigt, dass Europa und hier speziell Deutschland federführend beim Einsatz von künstlicher […]

Deutschland ist führend bei der Einführung von KI in der Fertigungsindustrie

Bild: Capgemini Research Institute

Eine neue Studie des Capgemini Research Institute zeigt, dass Europa und hier speziell Deutschland federführend beim Einsatz von künstlicher Intelligenz (KI) in Produktionsprozessen ist. 51 Prozent der größten global aufgestellten Fertigungsunternehmen in Europa implementieren mindestens einen KI-Anwendungsfall. Hersteller können sich bei der Einführung von KI-Elementen im Produktionsablauf auf drei Einsatzszenarien konzentrieren: intelligente Wartung, Produktqualitätskontrolle und Bedarfsplanung, so ein Ergebnis der Studie nach der Analyse von 22 möglichen KI-Anwendungen.

Die Capgemini-Studie ‚Scaling AI in Manufacturing Operations: A practitioners‘ perspective‘ analysiert, wie KI-Anwendungen implementiert werden und untersucht hierzu weltweit 300 Top-Unternehmen aus den vier Sektoren industrielle Fertigung, Automobil, Konsumgüter sowie Luftfahrt und Verteidigung. Die Ergebnisse bestätigen das enorme Potenzial, das sich für die Branche durch KI hinsichtlich geringerer Betriebskosten, verbesserter Produktivität und höherer Qualität ergibt. Die weltweit führenden Produktionsunternehmen in Deutschland (69 Prozent), Frankreich (47 Prozent) und Großbritannien (33 Prozent) sind laut der Studie die Vorreiter beim Einsatz von KI-Elementen im Fertigungsbereich.

Nutzung von KI macht einen Unterschied in der gesamten Wertschöpfungskette

Führende Unternehmen nutzen KI über mehrere Produktionsbereiche hinweg zu ihrem Vorteil. Ein Beispiel dafür ist das Lebensmittelunternehmen Danone, das Prognosefehler um 20 Prozent reduzieren und Umsatzeinbußen um 30 Prozent vermeiden konnte, indem es maschinelles Lernen zur Vorhersage von Nachfrageschwankungen einsetzt. Auch der Reifenhersteller Bridgestone, hat durch die Einführung eines neuen Montagesystems mit automatisierter Qualitätskontrolle die Einheitlichkeit der Produkte um über 15 Prozent verbessert.

Seiten: 1 2Auf einer Seite lesen

Thematik: Zahlenfutter
|
Capgemini // Capgemini Invent
www.capgemini.com/de-de/research/ki-in-der-industrie/

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.