Die Zukunft industrieller Maschinensteuerungen dank KI und moderner Analytik

Ein großer Vorteil dieser intelligenten Technologien gegenüber traditionellen Maschinensteuerungsarchitekturen sind Ihre Datenverarbeitungs-, Lern- und Entscheidungsfähigkeiten. Denn das bedeutet erhöhte Verfügbarkeit, Effizienz und Zuverlässigkeit durch vorbeugende und vorausschauende Wartung. Dazu kommt eine verbesserte Produktivität mit der Fähigkeit, autonome Entscheidungen zu treffen.
Bild: Mitsubishi Electric Europe B.V.

Vor nicht allzu langer Zeit waren Technologien wie modellbasierte Steuerung, PID-Steuerung, feldorientierte Steuerung und Fuzzy-Logik rein hypothetisch. Heute sind sie so tief in den Steuerungsarchitekturen eingebettet, dass wir nicht einmal mehr über sie nachdenken.

Maschinenzustände ich Echtzeit analysieren

Wie werden wir in ein paar Jahren über fortgeschrittene Analytik (AA) und künstliche Intelligenz (AI) in Maschinensteuerungen denken? Im Zweifel völlig selbstverständlich. Denn sie werden eine treibende Kraft für erhöhte Maschinenverfügbarkeit sein, indem sie z.B. eine noch effektivere vorausschauende Wartung ermöglichen, wie sie bereits heute möglich ist. AA- und AI-Technologien ermöglichen es durch Big Data-Analysen, verschiedene Maschinenzustände in Echtzeit aufzuzeichnen und zu analysieren. Sie monitoren den aktuellen Maschinenzustand, erkennen anstehende Fehlfunktionen und geben unverzüglich Handlungsempfehlungen. Der Maschinenbediener oder der Wartungsdienst kann reagieren, oder das System wird selbstständig Abhilfemaßnahmen einleiten.

Produktionsoptimierung durch KI

Was passiert, wenn die KI-Technologie auf ein gesamtes Unternehmen ausgerollt wird? Spannend wäre ein Szenario für die Lieferkette. Es kommt zu Engpässen bei der Lieferung. Die Maschine reagiert und verlangsamt die Produktion selbständig, bis die Ersatzkomponenten eintreffen. So kann ein Anhalten der gesamten Produktionslinie verhindert werden. Zukünftig wird die KI autonome Entscheidungen treffen, um die Produktivität zu optimieren. Aktuell ist eine Maschine so konstruiert, dass sie innerhalb definierter Leistungsgrenzen arbeitet – vielleicht, um unterschiedliche Lasten oder Geschwindigkeiten oder Sicherheitsbereiche zu berücksichtigen. Die KI-Technologie aber verwendet innerhalb der Steuerung tiefer gehende Lernalgorithmen. Diese könnten es ermöglichen, Maschinen bis an die heutigen Grenzen und darüber hinaus zu fahren. Und so die Produktivität erheblich zu steigern, ohne die Zuverlässigkeit oder Sicherheit zu beeinträchtigen.

KI-Technologie für Predictive Maintenance

Wir sehen bereits heute, wie die Anwendung der KI-Prinzipien auf einzelne Maschinenprozesse zu betrieblichen Verbesserungen führen kann. So hat Mitsubishi Electric z.B. eine Diagnosetechnologie auf der Grundlage seiner KI-Technologie namens Maisart (Mitsubishi Electric’s AI creates the State-of-the-Art in Technology) entwickelt. Eingebettet in Produkte wie die Melipc-Edge-Computing-Lösung, nutzt diese maschinelles Lernen zur Analyse gesammelter Daten, um ein Modell der Betriebszustände der Maschine zu generieren. Dieses Modell kann Anomalien im Betrieb der Maschine in Echtzeit erkennen und so frühzeitig vor drohenden Problemen warnen, so dass das Wartungspersonal umgehend Maßnahmen ergreifen kann.

Die Edge-Computing-Lösung Melipc von Mitsubishi Electric nutzt maschinelles Lernen, um gesammelte Daten zu analysieren und ein Modell der Betriebszustände der Maschine zu generieren.
Die Edge-Computing-Lösung Melipc nutzt maschinelles Lernen, um gesammelte Daten zu analysieren und ein Modell der Betriebszustände der Maschine zu generieren. – Bild: Mitsubishi Electric Europe B.V.

Ein weiteres Beispiel für den Einsatz von KI ist die intelligente vorausschauende Wartungsfunktion der Melfa-Roboter. Die Melfa SmartPlus-Funktion kann bei den Robotern von Mitsubishi Electric angewendet werden. Sie analysiert genau primäre Antriebskomponenten entsprechend den tatsächlichen Betriebsbedingungen und warnt frühzeitig vor dem Ausfall oder den Verschleiß von Teilen. Dadurch werden Ausfallzeiten reduziert und ein effizienter Wartungsplan kann geplant werden. Darüber hinaus bietet die Technologie während der Konstruktionsphase der Anwendungen Simulationsmöglichkeiten zur Vorhersage der Lebensdauer des Roboters und zur Abschätzung der jährlichen Wartungskosten. Dadurch haben Ingenieure die Möglichkeit, den Betrieb des Roboters zu modifizieren, um die Lebensdauer zu verlängern.

Mitsubishi Electric Europe B.V.

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.