Künstliche Intelligenz

Prüfkriterien zur KI-Zertifizierung

Um das wirtschaftliche und gesellschaftliche Potential von künstlicher Intelligenz auszuschöpfen, müssen Menschen den Entscheidungen von KI-Systemen und den mit ihnen verbundenen Prozessen vertrauen. Dazu kann eine entsprechende Zertifizierung beitragen. Nach welchen Kriterien dies geschehen könnte, zeigt die Plattform Lernende Systeme in einem aktuellen Whitepaper.
Bild: ©monsitj/stock.adobe.com

Die Zertifizierung ist eine Möglichkeit, um die Qualität eines KI-Systems sicherzustellen. Sie ist eine meist zeitlich begrenzte Bestätigung durch unabhängige Dritte, dass vorgegebene Standards, Normen oder Richtlinien eingehalten werden. Dabei gilt: Nicht jede KI-Anwendung muss zertifiziert werden. Während ein Großteil der KI-Systeme unproblematisch sein dürfte, wie etwa Algorithmen zur Identifizierung von Spammails, gibt es Anwendungen, die einer genaueren Prüfung unterzogen werden sollten, heißt es in in einem aktuellen Whitepaper der Plattform Lernende Systeme. Die Autoren schlagen darin vor, für die Entscheidung, ob ein System zertifiziert werden soll, die sogenannte Kritikalität des Systems zu bewerten. Zu fragen sei, ob ein System Menschenleben oder Rechtsgüter wie die Umwelt gefährde und wie viel Handlungsspielraum dem Menschen bei der Auswahl und Nutzung der Anwendung bleibt, etwa um bestimmte Funktionen abzuschalten. Entscheidend für die Kritikalität ist stets der Anwendungskontext. Das gleiche System kann in einem Anwendungskontext unproblematisch und in einem anderen höchst kritisch sein. So könne ein Staubsaugerroboter trotz seines hohen Maßes an Autonomie zunächst als vergleichsweise unproblematisch gelten, sammelt er aber Daten, die er seinem Hersteller zur Verfügung stellt, kann die Bewertung kritischer ausfallen.

Überregulierung ist zu vermeiden

„Eine Zertifizierung kann für eine Vielzahl von KI-Systemen dazu beitragen, ihr gesellschaftliches Nutzenpotential sicher und gemeinwohlorientiert auszuschöpfen. Damit dies im Einklang mit gesellschaftlich anerkannten Werten geschieht, muss eine Form von Zertifizierung gefunden werden, die von wichtigen ethischen Prinzipien geleitet wird, aber gleichzeitig auch ökonomische Prinzipien erfüllt, Überregulierung vermeidet sowie Innovationen fördert. Im besten Fall kann eine Zertifizierung selbst zum Auslöser neuer Entwicklungen für einen europäischen Weg in der KI-Anwendung werden“, sagt Jessica Heesen, Leiterin des Forschungsschwerpunkts Medienethik und Informationstechnik am Internationalen Zentrum für Ethik in den Wissenschaften (IZEW) der Universität Tübingen sowie Co-Leiterin der Arbeitsgruppe IT-Sicherheit, Privacy, Recht und Ethik. Bei einem höheren Kritikalitätsgrad, wie zum Beispiel einer KI, die zur Verteilung von Studienplätzen eingesetzt wird, empfehlen Autoren, den Staat als regulierende Instanz einzusetzen. Für besonders kritische Anwendungskontexte wie einer biometrischen Fernidentifikation könnte der Staat Verbote oder Einschränkungen beim Einsatz aussprechen.

Die anzulegenden Prüfkriterien unterteilen die Autoren in Mindestkriterien, die immer erfüllt werden müssen, und darüber hinaus gehende freiwillige Kriterien. Zu den Mindestkriterien zählten Transparenz, Sicherheit, Diskriminierungsfreiheit oder Schutz der Privatheit. Als weitere Kriterien nennt das Whitepaper etwa Nutzerfreundlichkeit oder Nachhaltigkeit. Die Zertifizierung sollte durchgeführt werden, bevor das KI-System in der Praxis zum Einsatz kommt. Allerdings entwickeln sich vor allem lernende KI-Systeme nach Inbetriebnahme weiter, was turnusmäßige Re-Zertifizierungen notwendig machen kann. Zudem empfehlen die Autoren, Bürger in Zertifizierungsprozesse einzubeziehen und bereits in der Schule Wissen zur Funktionsweise von KI-Systemen zu vermitteln.

Thematik: Newsarchiv
| News
Acatech - Dt. Akademie der Technikwissenschaften

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.