Forschungsprojekt Darwin

Maschinen lernen voneinander

Das Kunststoff-Zentrum SKZ in Würzburg führt im Rahmen des Forschungsprojekts Darwin mit dem Fraunhofer Spin-off plus10 mehrere Versuchsreihen durch. Ziel ist die Entwicklung kontinuierlich lernender Modelle, die eine höhere Qualität bei kürzeren Zykluszeiten ermöglichen sollen. Dafür werden Maschinen von verschiedenen Herstellern einbezogen und Verallgemeinerungsstrategien konzipiert.
Bild: Elke Kunkel Fotografie

Bereits seit Ende 2020 laufen die Versuchsreihen für das Forschungsprojekt Darwin. Ziel des KI-Projekts ist es, detaillierte Verhaltensmodelle von Spritzgießmaschinen auf hochfrequenten Maschinendaten zu lernen. Dafür werden Maschinen unterschiedlicher Hersteller herangezogen, die im Laufe der Zeit ähnliche Teile produzieren. Auf diese Weise sollen die auf einer Maschine gelernten Verhaltensmodelle auch auf andere Maschinen übertragbar sein, ohne die Modelle für jede Maschine wieder komplett neu zu lernen. Die Verhaltensmodelle schlagen optimierte Prozessparameter für den nächsten Schuss vor, um bei minimal möglicher Zykluszeit ohne Ausschuss zu produzieren.

Anwendungsnahe Forschung

Beide Unternehmen erforschen anwendungsnah Machine Learning-Modelle zur Verhaltensbeschreibung von zyklischen Fertigungsprozessen am Beispiel des Spritzgießens. Im Zentrum steht die Online-Fähigkeit, also die Bildung und Erweiterung eines Modells, während der Prozess läuft. Daneben spielt auch die Untersuchung der Übertragbarkeit von vortrainierten Machine Learning-Modellen von einer Maschine auf ähnliche, nicht identische Maschinen eine Rolle. Ein ’Evolutionslerner’ von plus10 generiert Optimierungsvorschläge basierend auf dem Verhaltensvergleich mit allen beteiligten gleichen bzw. ähnlichen Maschinen. Das SKZ stellt für die Versuchsreihen eine große Maschinenvielfalt unterschiedlicher Hersteller zur Verfügung. Von plus10 fließt zudem die Expertise zur intelligenten Datenverarbeitung und automatisierten Produktionsoptimierung mittels kontinuierlich lernender Modelle in das Projekt ein. Seitens des SKZ werden die übertragenen Optimierungsvorschläge beurteilt und die Bauteilqualität im Prüflabor kontrolliert.

Das Forschungsprojekt ’Darwin’ wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und endet voraussichtlich im November 2021.

Thematik: Newsarchiv
| News

Das könnte Sie auch Interessieren

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.