Künstliche Intelligenz hilft Menschen bei der Montage

Bild: Armbruster Engineering GmbH & Co. KG

Das Biba – Bremer Institut für Produktion und Logistik an der Universität Bremen stellt den Prototypen eines neuen Assistenzsystems für manuelle Montagestationen vor. Das System soll Arbeitende künftig mithilfe künstlicher Intelligenz individuell unterstützen und Montagefehler sowie Prozesszeiten reduzieren. Die Lösung analysiert die an der Montagestation gesammelten Prozessdaten und kamerabasiert erfasste Informationen. Dabei komme Bildverarbeitungs- und maschinelle Lernverfahren im Hinblick auf die ergonomische und produktionsbezogene Arbeitssituation zum Einsatz. Das System überprüft den Montageprozess sowie die Qualität des fertigen Produkts. Dabei integriert es mitarbeiterzentrierte Assistenzfunktionalitäten. Bisher standen bei Assistenzsystemen nur die zu fertigenden Produkte und deren Qualität im Fokus.

So funktioniert es

Optische Sensoren (Tiefenkameras) erfassen den Prozessfortschritt am Arbeitsplatz aus mehreren Perspektiven, zum Beispiel Handgriffe wie die Entnahme der einzelnen Bauteile aus den Vorratsbehältern und die Montagetätigkeit an sich. Die Kameras liefern ihre Bild- und Tiefendaten an das System, das diese in einem ersten Schritt mithilfe von Bildverarbeitungsverfahren in Echtzeit erkennt und auswertet.

Bei der Analyse zur Bewertung der Körperhaltung (Ergonomie) und für das Verfolgen der Handbewegungen des Arbeitenden (englisch hand tracking) setzt das System auf Methoden des ‚Deep Learning‘. Das steht für ‚tiefgehendes Lernen‘, eine Schlüsseltechnologie der künstlichen Intelligenz (KI). Das System wird mit jeder seiner Berechnungen besser, denn es baut seine Analysen und Prognosen selbstständig auf bereits Erlerntem auf. Basierend auf diesen analysierten Informationen und allgemeinen Prozessdaten wie Prozesszeiten und Fehlern erfolgt dann eine Individualisierung der Assistenz.

Die mithilfe der KI generierten Informationen bereitet das System für vielfältige Nutzungen auf – zunächst für die manuelle Arbeit direkt an der spezifischen Montagestation: Über Beamer-Projektionen auf die Arbeitsfläche erfolgen begleitende Darstellungen zur aktuellen Arbeit. Bei Bedarf erhalten die Arbeitenden auch ergänzende Informationen und Hilfen – einerseits zur technischen Montagetätigkeit mit Optionen, nebenbei hinzuzulernen, und andererseits zur gesundheitsschonenden, individuellen Optimierung ihrer Körperhaltung bei der Arbeit, der Ergonomie.

Durch die Beobachtung des Montagefortschritts, die gezielte Informationsbereitstellung sowie die Berücksichtigung der Bedürfnisse der Montierenden steigert das System die Prozesseffizienz sowie Montagequalität und verbessert die Arbeitssituation durch spezifische Unterstützungen mittels Motivations- und Weiterbildungsstrategien und -techniken.

Motivierung und Hinzulernen mittels ‚Gamification‘

Ein Ziel ist auch die bessere und zielgenauere Qualifizierung der Mitarbeiterinnen und Mitarbeiter sowie die Steigerung der Eigenmotivation. ‚Gamification‘ steht für die systemische Motivierung durch Anreize und bezeichnet den Prozess des spielerischen Hinzulernens mit Techniken, die ursprünglich aus der Welt der Computerspiele kommen und für den Einsatz in der Industrie weiterentwickelt wurden. Mittels gamifizierter Darstellungen der Informationen wird der Arbeitsprozess für die Arbeitenden ergonomischer und anregender gestaltet. Sie lernen nebenbei während ihrer praktischen Arbeit ’spielend‘ dazu. Mittels der gelieferten Daten des KI-Systems werden die gamifizierten Elemente vom Spiel-Design-Konzept gesteuert.

Effizient, effektiv und mit hoher Akzeptanz bei Nutzerinnen und Nutzern

Mithilfe der neuartigen Montageassistenz-Funktionalitäten durch die Kombination von informatorischer Prozessführung mit Projektion, automatischer Überwachung von Montageprozess- und Bauteilfortschritt, Ergonomie-Haltungserkennung sowie anreizbasierter Gamification wurde eine deutliche Reduktion von Montagefehlern und Prozesszeiten erreicht. Besonders bei Bestätigungsschritten wurden hohe Effizienzsteigerungen festgestellt. Zudem ergaben die projektbegleitenden Nutzerstudien, dass die Maßnahmen zur Unterstützung und Anreizgestaltung zu einer hohe Akzeptanz bei den Arbeitenden führen.

Seiten: 1 2Auf einer Seite lesen

Thematik: Newsarchiv
| News
Universität Bremen

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.