intelligente Prozessüberwachung mit direkter Signalverarbeitung

Das Bundesministerium für Bildung und Forschung (BMBF) investiert aktiv in die Entwicklung neuer Elektroniksysteme und fördert dabei Verbundforschungsprojekte, die signifikant zur Umsetzung des Zukunftsprojekts Industrie 4.0 beitragen. Ziel des vom BMBF geförderten Gesamtprojekts KI-Predict ist die Nutzung von Methoden der künstlichen Intelligenz (KI) auf unterschiedlichen Ebenen des Produktionsprozesses als Basis für die zustandsbasierte, prädiktive Wartung von Produktionsanlagen und die Überwachung der Produktqualität direkt im Produktionsprozess. An diesem Projekt sind insgesamt sieben Partner beteiligt: unter ihnen das Fraunhofer-Institut für Integrierte Schaltungen IIS mit der Entwicklung eines Sensor-Interface ASICs. Das Besondere daran: Es ist auf Sensoren für Condition-Monitoring und Echtzeit-Prozesskontrolle abgestimmt und ermöglicht eine energieeffiziente Feature-Extraction und Signalverarbeitung direkt am Sensor.

Mikroelektronik, kombiniert mit Sensorik und eingebetteter Software, erfasst und verarbeitet Prozessdaten in Industrieanlagen. Dies ermöglicht die Digitalisierung von Produktionsprozessen und Betriebsabläufen in der Industrie 4.0. Heute verfügbare Elektroniksysteme zur Datenerfassung und Signalverarbeitung, insbesondere Signalprozessoren (DSP) oder programmierbare Logik (FPGA), sind jedoch für diesen Anwendungsbereich nicht optimiert und folglich im Vergleich zu den zu überwachenden Komponenten teuer.

Das Projekt KI-Predict adressiert genau dieses Problem in einem ganzheitlichen Ansatz. Die Kombination neuer KI-Methoden mit dazu optimierter, integrierter Hardware ermöglicht eine intelligente Prozessüberwachung mit direkter Signalverarbeitung und Feature-Extraktion am Ort des Geschehens. Diese neue Qualität der Datenverarbeitung direkt am Sensor ermöglicht eine sichere, dezentrale Analyse- und Prognosefähigkeit mit gleichzeitig definierter und geringer Latenz. Hierzu wird eine miteinander verzahnte Hard- und Softwarearchitektur entwickelt, die zum einen den Fokus auf sensornahe Datenfusion, Datenreduktion und Datenauswertung legt und zum anderen fehlerhafte Sensoren durch das Interpretieren von Anomalien erkennt. So werden z.B. neben üblichen Funktionen, wie etwa der digitalen Erfassung von Strom, Position, Vibration, Akustik, Druck, Kraft und Temperatur, vor allem Funktionalitäten für maschinelles Lernen (ML) bereitgestellt, wodurch eine dezentrale Datenverarbeitung und -reduktion ermöglicht wird.

Das Interface ist insbesondere in der Lage, energieeffizient Merkmale auch in hochfrequenten Sensorsignalen zu erkennen und diese entweder auf Steuerungsebene als Basis für die Sensordatenfusion zur Verfügung zu stellen oder direkt für die Klassifikation, das Clustering oder die Anomaliedetektion zu nutzen.

Die Nutzung von industriell üblichen Schnittstellen und Netzwerken wird durch die sensornahe Gewinnung aggregierter Merkmale aus dem Datenstrom ermöglicht. Dadurch können die Industriepartner den Funktionsumfang ihrer Anlagen, ohne zusätzliche Infrastrukturkosten, erhöhen. Gleichzeitig können diese Merkmale auf höheren Ebenen der Prozesssteuerung bzw. der ERP-Software mittels komplexeren KI- und ML-Methoden genutzt werden, um den Anlagenzustand und die Produktqualität zu erfassen sowie Trends zu verfolgen. Diese erweiterte Datenauswertung kann genutzt werden, um die Betriebskosten der Anlage zu senken. Hierbei ist die Hardware nicht an spezielle Anwendungsfälle angepasst und kann somit automatisiert an neue Anwendungsfälle angelernt werden.

Fraunhofer-Institut IIS

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige