Digitale Dokumentenanalyse profitiert von Künstlicher Intelligenz

Bild: ©wacomka/stock.adobe.com

Technologien zur optischen Zeichenerkennung sollen künftig von den Durchbrüchen im Bereich der künstlichen Intelligenz profitieren – das haben sich die Partner des Anfang Juli gestarteten Forschungsprojekts ‚Deep learning based optical character recognition – kurz: DeepER‘ zum Ziel gesetzt. Im Rahmen des vom Bundesbildungsministerium geförderten Projekts arbeiten das Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS, CIB Software und Mentana Claimsoft an einer neuen Software zur Dokumentenanalyse. Dabei sollen selbstlernende intelligente Systeme – basierend auf Deep-Learning-Methoden – einen erheblichen Technologiesprung bringen. Ziel ist es, die Fehlerraten beim Erkennen von Buchstaben, Wörtern, Texten oder Bildern deutlich zu verringern, um so an die Leistungsfähigkeit der menschlichen Interpretation heran zu reichen. Kern des Vorhabens ist die Entwicklung einer ‚OCR-Engine‘, die auch bei der Auswertung von großen Informationsmengen keine oder möglichst wenige Fehler produziert. Optical Character Recognition (OCR) wird u.a. bei der Digitalisierung von Bibliotheksinhalten, Zeitungsarchiven oder Versicherungsdokumenten eingesetzt. In vielen Fällen reicht es aus, wenn die digitalisierten Dokumente bis zu 99 Prozent richtig erfasst werden – zum Beispiel, um Papierdokumente über Suchmaschinen zugänglich zu machen. Bei rechtlich und finanziell relevanten Dokumenten bedeutet aber selbst eine Erkennungsrate von 99,9 Prozent je Zeichen, dass jede Dokumentseite einen Fehler hat – hier leistet der Mensch erheblich mehr. „Unser Ziel, Verwaltungsprozesse im privaten Bereich und in Großunternehmen zu automatisieren, kann durch diese neuartige OCR-Engine erheblich weiterentwickelt werden. Mit der Web-Anwendung CIB doXisafe können Privatanwender ihre Dokumente von überall ohne Installation ablegen, austauschen und im integrierten CIB doXiview ohne Download anzeigen lassen“, sagt Ulrich Brandner, Geschäftsführer bei CIB Software. Anwendungen in der Sprach- oder Gesichtserkennung profitierten bereits von Deep Learning. In Deutschland würden die technologischen Fortschritte der künstlichen Intelligenz jedoch eher im Forschungsbereich stattfinden und noch viel zu selten in die Anwendung gebracht, so Joachim Köhler, Abteilungsleiter am Fraunhofer IAIS. Mit der Entwicklung einer OCR-Engine will das Institut Deep-Learning-Technologien auch für die Wirtschaft und insbesondere den Mittelstand nutzbar machen. Die OCR-Engine wird zunächst in das bestehende Produktportfolio bei CIB Software eingebaut und getestet. Darüber hinaus soll sie zunächst für den deutschen Markt anderen Unternehmen über ein Lizenzmodell zur Verfügung gestellt werden.

Thematik: Newsarchiv
| News
Fraunhofer-Institut FIT
http://www.fit.fraunhofer.de

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.