Die 5 IoT Trends 2021

Industrial IoT, das industrielle Internet der Dinge, mit dem die Vernetzung von Maschinen, Produktionsanlagen und Gebäuden ermöglicht wird, ist aktuell durch fünf relevante Themen geprägt. Die Unternehmensberatung MM1 gibt einen Überblick über die aktuell prägendsten Technologietrends im industriellen Umfeld.
Bild: mm1 Consulting & Management

1 . Die Produktion der fertigenden Industrie wird zunehmend vernetzt
2. Maschinelles Lernen extrahiert wertvolle Erkenntnisse aus Daten
3. IoT Security stellt die vernetzte Industrie vor Herausforderungen
4. Digitale Plattformen beschleunigen neue Geschäftsmodelle
5. Mehr Nachhaltigkeit dank kohlenstoffneutraler Produktion

Industrie 4.0: Die intelligente, vernetzte ‚Smart Factory‘

Kundenindividuelle Produkte steuern sich selbst durch die Fertigung. Fahrerlose Transportsysteme übernehmen die Intralogistik an die jeweils optimale Produktionseinheit, in welcher die Prozesse autonom oder in Kollaboration zwischen Mensch und Roboter zuverlässig ausgeführt werden. Zukunftsvision? Nein – Industrie 4.0.

Industrie 4.0 beschreibt die vierte industrielle Revolution im Sinne einer Vernetzung und Steuerung von Prozessen sowie Maschinen durch Informations- und Kommunikationstechnik (IKT). Bereits seit zehn Jahren ist Industrie 4.0 der zentrale Trend in der Produktion, welcher beispielsweise durch die zunehmende Hyperautomatisierung oder das Edge Computing gestützt wird. Vorausschauende Wartung (Predictive Maintenance), kontinuierliche Zustandsüberwachung und datenbasierte Optimierung und Steuerung (Condition-based Monitoring), flexible und modulare Prozesse – Industrie 4.0 im Sinne einer intelligenten sowie vernetzten ‚Smart Factory‘ befähigt zu einer Vielzahl an Möglichkeiten zur Steigerung der Wettbewerbsfähigkeit. Die Grundlage hierfür bildet das erfolgreiche Verknüpfen von AI (Artificial Intelligence) und IoT (kurz AIoT) zur Realisierung von neuen Geschäftsmodellen sowie Prozessoptimierungen durch Smart Connected Products oder Solutions.

Ergebnisse einer erfolgreichen digitalen Transformation äußern sich z.B. in einer gesteigerten Liefertreue, kürzeren Durchlaufzeiten, einer effizienteren Ressourcennutzung, geringeren Beständen sowie einer erhöhten Prozesstransparenz.

Künstliche Intelligenz: Maschinelles Lernen im Kontext von IoT

Bild: mm1 Consulting & Management

Selbstlernende Algorithmen werden der vorliegenden Daten immer intelligenter und unterstützen Tätigkeiten in der Industrie. KI ist keine gefährliche Supermacht, dafür ein echter Booster für das industrielle Umfeld.

Mit menschenähnlichen Robotern hat künstliche Intelligenz im industriellen Umfeld wenig zu tun. Maschinelles Lernen als konkrete Ausprägung der sogenannten ’schwachen‘ künstlichen Intelligenz ermöglicht selbstlernenden Algorithmen, große Datenmengen (Big Data) zu analysieren, Muster zu erkennen, Prozesse zu optimieren und neue Lösungen zu finden. Maschinelles Lernen wird durch den Trend des ‚Edge Computings‘ verstärkt: Berechnungen werden örtlich nah an der Quelle der Datenerzeugung durchgeführt und sind so effizienter, robuster und reaktionsfähiger (Stichwort ‚Echtzeitfähigkeit‘).

Maschinelles Lernen kann in Supervised Learning, Unsupervised Learning und Reinforcement Learning unterteilt werden, wobei jede Art für unterschiedliche Fragestellungen passend ist. Relevant im industriellen Kontext ist z.B. die Bilderkennung von Dingen in der Produktion, welche durch Klassifizierungsalgorithmen realisiert werden kann. Industrieunternehmen, die maschinelles Lernen wertgenerierend einsetzen wollen, brauchen aber nicht nur leistungsstarke Rechner, die Daten in Insights verwandeln. Sie benötigen auch die entsprechende Infrastruktur, eine passende Governance und eine zielgerichtete Datenstrategie: ‚Data to Value‘.

Bild: MM1 Consulting & Management

IoT-Security: Proaktive Absicherung vernetzter IoT-Devices

Täglich werden weltweit ca. 6,4 Billionen Fake Mails versendet – genügend, um sich ernsthaft mit dem Thema der IT-Security zu befassen. IoT-Security adressiert dieses in einer Welt der zunehmenden Vernetzung ‚von Dingen‘.

Seiten: 1 2Auf einer Seite lesen

Thematik: Newsarchiv
| News
mm1 Consulting & Management

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige