Sehen, was die KI denkt

Sehen, was die KI denkt

Der Blick in neuronale Netze

Künstliche Intelligenz ist längst in unserem Alltag präsent und dringt in immer mehr
Bereiche vor. Fortschritte im KI-Bereich beruhen vor allem auf der Verwendung neuronaler Netze. Vergleichbar mit der Funktionsweise des menschlichen Gehirns verknüpfen sie mathematisch definierte Einheiten miteinander. Doch bisher wusste man nicht, wie ein neuronales Netz Entscheidungen trifft. Forschende des Fraunhofer Heinrich-Hertz-Instituts HHI und der Technischen Universität Berlin haben nun eine Technik entwickelt, die erkennt, anhand welcher Kriterien KI-Systeme Entscheidungen fällen.

 (Bild: Lothar Lenz/www.pferdefotoarchiv.de)

(Bild: Lothar Lenz/www.pferdefotoarchiv.de)

Heute gibt es kaum noch einen Bereich, in dem künstliche Intelligenz (KI) keine Rolle spielt, sei es in der Produktion, der Werbung oder der Kommunikation. Viele Unternehmen nutzen lernende und vernetzte KI-Systeme, etwa um präzise Nachfrageprognosen anzustellen und das Kundenverhalten exakt vorherzusagen. Auf diese Weise lassen sich beispielsweise Logistikprozesse regional anpassen. Auch im Gesundheitswesen bedient man sich spezifischer KI-Tätigkeiten wie dem Anfertigen von Prognosen auf Basis von strukturierten Daten – etwa bei der Bilderkennung. So werden Röntgenbilder als Input in ein KI-System gegeben, der Output ist eine Diagnose. Das Erfassen von Bildinhalten ist auch beim autonomen Fahren entscheidend, wo Verkehrszeichen, Bäume, Fußgänger und Radfahrer fehlerfrei erkannt werden müssen. In solch sensiblen Anwendungsfeldern müssen KI-Systeme absolut zuverlässige Problemlösungsstrategien liefern. Bislang war es jedoch nicht nachvollziehbar, wie KI-Systeme Entscheidungen treffen. Zudem basieren die Vorhersagen auf der Qualität der Input-Daten. Mit der Layer-Wise Relevance Propagation (LRP) haben Forschende am Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hz-Institut, HHI, und der Technischen Universität Berlin nun eine Technik entwickelt, die KI-Prognosen erklärbar macht und somit unsichere Problemlösungsstrategien aufdeckt. Die Weiterentwicklung der LRP-Technologie, die sogenannte Spectral Relevance Analysis (Spray) identifiziert und quantifiziert ein breites Spektrum erlernten Entscheidungsverhaltens und erkennt somit auch in riesigen Datensätzen unerwünschte Entscheidungen.

Neuronale Netze interpretieren

In der Praxis identifiziert die Technik einzelne Input-Elemente, die für eine Vorhersage genutzt wurden. Wird also beispielsweise ein Gewebebild in ein KI-System eingegeben, so wird der Einfluss jedes Pixels auf das Klassifikationsergebnis quantifiziert. Die Vorhersage, wie ‚krebsartig‘ oder ’nicht krebsartig‘ das Gewebebild ist, wird also mit der Angabe der Basis für diese Klassifikation ergänzt. „Nicht nur das Ergebnis soll korrekt sein, sondern auch der Lösungsweg. Bislang wurden KI-Systeme als Black Box angewendet. Man hat darauf vertraut, dass sie das richtige tun. Mit unserer Open-Source-Software ist es uns gelungen, die Lösungsfindung von KI-Systemen nachvollziehbar zu machen“, sagt Dr. Wojciech Samek, Leiter der Forschungsgruppe ‚Machine Learning‘ am Fraunhofer HHI. „Mit LRP visualisieren und interpretieren wir neuronale Netze und andere Machine Learning-Modelle. Wir messen den Einfluss jeder Eingangsvariablen für die Gesamtvorhersage und zerlegen die Entscheidungen des Klassifizierers“, ergänzt Dr. Klaus-Robert Müller, Professor für Maschinelles Lernen an der TU Berlin.

Lösungsweg erkennen

Nur wer versteht, wie neuronale Netze funktionieren, kann den Ergebnissen vertrauen. Dass KI-Systeme nicht immer sinnvolle Lösungswege finden, ergaben die Tests der Forscherteams. Beispielsweise klassifizierte ein renommiertes KI-System Bilder anhand des Kontextes. Es ordnete Fotos der Kategorie Schiff zu, wenn viel Wasser im Bild zu sehen war. Die eigentliche Aufgabe, Schiffe zu erkennen, löste es nicht, auch wenn die Mehrzahl der Bilder korrekt identifiziert war. „Zahlreiche KI-Algorithmen wenden unsichere Strategien an und kommen zu wenig sinnvollen Lösungen“, resümiert Samek das Ergebnis der Untersuchungen.

Seiten: 1 2Auf einer Seite lesen

Fraunhofer-Institut für Nachrichtentechnik
www.fraunhofer.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige