Bin Picking: Gesehen, gespeichert, gelernt!

Unbekannte Teile sicher greifen - Wissenschaftler des KIT zeigen, wie Roboter Bin-Picking-Aufgaben selbst trainieren können. Dabei helfen eine Ensenso 3D-Kamera von IDS und ein neuronales Netz. Details erfahren Sie in der Case Study.

 

Bild: IDS Imaging Development Systems GmbH

Am Institut für Intelligente Prozessautomation und Robotik des Karlsruher Instituts für Technologie (KIT) befasst sich die Robot Learning Group (ROLE) mit verschiedenen Schwerpunkten in den Bereichen des maschinellen Lernens. Dabei erforschen die Wissenschaftler, wie Roboter durch selbstständiges Ausprobieren lernen Aufgaben zu lösen. Diese Methoden werden insbesondere für das Lernen von Objektmanipulation eingesetzt, beispielsweise für das Greifen von Objekten in einem typischen Bin Picking Szenario. Eine Ensenso N10 3D-Kamera von IDS direkt am „Kopf“ des Roboters liefert die benötigten Bilddaten.

Das Greifen von chaotisch liegenden Gegenständen ist gerade in der industriellen Automation eine zentrale Aufgabe. Aktuelle Bin Picking Lösungen sind jedoch häufig unflexibel und stark an das zu greifende Werkstück angepasst. Die Forschungsprojekte der Robot Learning Group versprechen Abhilfe, z.B. mit Robotern, die selbständig lernen, zuvor unbekannte Objekte aus einem Behälter zu greifen. Um eine solche Aufgabe zu lernen, beginnt der Roboter zunächst mit zufälligen Greif-Versuchen, wie es auch ein Mensch machen würde. Ein neuronales Netz setzt die dabei aufgenommenen 3D-Bilder mit den erfolgreichen bzw. missglückten Greifversuchen in Zusammenhang. Dafür wird zu jedem Bild das Greifergebnis gespeichert, das über einen Kraftsensor im Greifer ermittelt wurde. Die künstliche Intelligenz (KI) erkennt anhand der gespeicherten Daten sinnvolle Greifpunkte für die Objekte und „trainiert“ sich damit selbst. Wie bei modernen Methoden des Reinforcement Learning üblich, sind dazu große Datenmengen und viele Greifversuche unerlässlich. Die Forscher des KITs konnten die Anzahl letzterer jedoch deutlich reduzieren und damit auch die zum Lernen benötigte Zeit verkürzen.

Die visuelle Grundlage für den Griff des Roboters liefert eine Ensenso 3D-Kamera. Sie blickt von oben auf den Behälter, zufällig gefüllt mit Objekten einer oder verschiedener Art. Das Bildverarbeitungssystem projiziert eine kontrastreiche Textur auf den Kisteninhalt und erzeugt eine 3D-Punktewolke der von oben sichtbaren Oberflächen, als Basis für die Berechnung des Tiefenbildes in Graustufen. Das Tiefenbild wird anschließend auf eine Auflösung von nur 12.000 Pixel skaliert und als Eingabe für die KI-Algorithmen verwendet. Das neuronale Netz kümmert sich daraufhin um die Bildanalyse und die folgerichtigen Schritte für den nächsten Griff in die Kiste. Die ausführliche Case Study lesen Sie auf der IDS-Website.

IDS Imaging Development Systems GmbH
https://de.ids-imaging.com/casestudies-detail/de_seen-stored-learned.html?utm_source=Robotik_Produktion_Newsletter&utm_medium=SponsoredPost&utm_campaign=EnsensoN_KIT

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige