KI-Beispiele aus dem Umfeld der Mittelstand 4.0-Kompetenzzentren

32 Milliarden Euro Wertschöpfung könnte künstliche Intelligenz (KI) bis 2023 allein im produzierenden Gewerbe generieren. Doch bis selbstlernende Algorithmen flächendeckend zum Einsatz kommen, müssen vor allem im Mittelstand noch einige Hürden genommen werden.

Wissensmanagement

Ebenso wichtig ist Qualitätskontrolle in der Textilindustrie. Allein bei der Herstellung von Vliesstoff fällt in Deutschland jährlich Ausschuss im Wert von 50 Millionen Euro an, weil die Ware nicht dem erforderlichen Mindeststandard entspricht. Eine häufige Ursache: Nicht optimal eingestellte Produktionsanlagen. Die Einstellung und Bedienung der Anlagen erfolgt heute meist erfahrungsbasiert nach dem Trial-and-Error-Prinzip. Bei etwa 250 bis 300 Variationsmöglichkeiten ist es allerdings selbst für langjährige Mitarbeiter nicht möglich, alle Zusammenhänge für die Produktionsprozesse zu erlernen. Das Institut für Textiltechnik Augsburg hat deswegen zusammen mit mittelständischen Unternehmen eine Lösung entwickelt, mit der die Vliesstoffanlagen mit künstlicher Intelligenz schnell und einfach eingestellt werden können. Dafür wurden große Datenmengen mit Informationen über die Umgebungsbedingungen und Anlageneinstellungen erhoben. Zugleich erfasste optische Messtechnik die resultierende Vliesqualität. Mit den aufbereiten Daten konnten wiederum neuronale Netze trainiert werden. Damit ist es nun möglich, die Auswirkungen verschiedener Einstellungen auf die Vliesqualität, die Produktionskosten und den Energiebedarf zu erkennen. Ein Optimierungsalgorithmus simuliert alle möglichen Einstellparameter bei den gegebenen Umgebungsbedingungen und wählt die Einstellung aus, bei der die geforderte Mindestqualität zu geringstmöglichen Kosten produziert wird.

Die richtige Unternehmensstrategie

Bevor KI im Mittelstand genutzt werden kann, stehen viele Unternehmen allerdings vor großen Herausforderungen. Gerade eine zu kleine Datenbasis ist für viele KI-Lösungen ein Problem: Denn die selbstlernenden Algorithmen müssen im Vorfeld mit möglichst vielen Daten gefüttert werden, um später brauchbare Ergebnisse zu liefern. Abhilfe schaffen hier etwa sogenannte Data-Sharing-Kooperationen mit anderen Unternehmen oder die Nutzung von cloudbasierten KI-as-a-Service-Angeboten. Die 25 Mittelstand 4.0-Kompetenzzentren unterstützen Unternehmen kostenfrei und anbieterneutral bei der Entwicklung passender KI-Strategien. Darüber hinaus helfen sie mit Expertenwissen, Demonstrationszentren und Best-Practice-Beispielen bei vielen weiteren Digitalisierungsfragen. Im Rahmen der Strategie Künstliche Intelligenz der Bundesregierung ist gerade auch ein KI-Trainerprogramm gestartet, das an den Kompetenzzentren angesiedelt ist.

Seiten: 1 2Auf einer Seite lesen

Bundesministerium für
www.bmwi.de

Das könnte Sie auch Interessieren

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.