KI-Beispiele aus dem Umfeld der Mittelstand 4.0-Kompetenzzentren

32 Milliarden Euro Wertschöpfung könnte künstliche Intelligenz (KI) bis 2023 allein im produzierenden Gewerbe generieren. Doch bis selbstlernende Algorithmen flächendeckend zum Einsatz kommen, müssen vor allem im Mittelstand noch einige Hürden genommen werden.

 

Bild: ©Gorodenkoff/stock.adobe.com

Distribution und Logistik sind zwei Bereiche, in denen sich der Einsatz von künstlicher Intelligenz auch für kleine und mittlere Unternehmen auszahlen könnte. Zu diesem Schluss kamen 84 Prozent der KI-Experten, die für eine Studie der vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderten Initiative Mittelstand-Digital befragt wurden. Weitere große Chancen sehen sie in verbessertem Kundenservice und zielgenauerem Marketing (je 78 Prozent) sowie Produktinnovationen (75 Prozent) und gesteigerter Prozesseffizienz (72 Prozent). Hier zeigt sich, dass künstliche Intelligenz wenig mit Science-Fiction-Szenarien aus Hollywood zu tun hat: Vielmehr ist sie die logische Fortführung der Prozessautomatisierungen, die in vielen kleinen und mittleren Betrieben im Zuge der Digitalisierung längst begonnen haben. Dabei illustrieren schon heute einige Beispiele, wie die Einführung von KI-Technologien im Mittelstand gelingen kann.

Flexible Arbeitszeitmodelle

Das Mittelstand 4.0-Kompetenzzentrum Ilmenau, eine von 26 regionalen Anlaufstellen des Mittelstand-Digital-Netzwerks, hat einen thüringischen Hersteller von Dreh- und Frästeilen bei der Flexibilisierung von Arbeitszeiten mit künstlicher Intelligenz unterstützt. Für die Umsetzung rüstete das Unternehmen alle Produktionsmaschinen mit Sensoren aus, vernetzte sie untereinander und führte alle Daten auf einer Plattform zusammen. Damit war eine entscheidende Voraussetzung für den KI-Einsatz geschaffen. Denn in vielen mittelständischen Betrieben arbeiten über Jahre gewachsene IT-Systeme mit unterschiedlichen Schnittstellen und Dateiformaten. Das erschwert den Datenaustausch zwischen Systemen und macht Geschäftsprozesse oder die Unternehmensplanung weniger effizient. Im Thüringer Unternehmen analysiert nun eine selbstlernende Software die gesammelten Maschinendaten. Sie gleicht in Echtzeit Lauf-, Stillstand- und Umrüstzeiten mit dem Personaleinsatz ab. So kann ermittelt werden, ob und wann im Produktionsablauf Dopplungen bei der Maschinenbelegung entstehen. Eine Smartphone-App informiert die Mitarbeiter rechtzeitig darüber. Sie müssen folglich nicht mehr an einer belegten Maschine warten und können die entstandenen Zeitfenster etwa für private Erledigung wie einen Einkauf nutzen. Somit kann künstliche Intelligenz auch ein Werkzeug sein, um die Attraktivität als Arbeitgeber zu erhöhen.

Qualitätskontrolle mit Kameras

Effizienzgewinne sind auch bei der industriellen Warenprüfung und Montage möglich. Der meist personal- und zeitaufwendige Prozess kann durch KI-Anwendungen teilautomatisiert werden. Wie das konkret aussehen kann, zeigt ein intelligentes Kamerasystem, an dem das Mittelstand 4.0-Kompetenzzentrum Dortmund mitgewirkt hat. Durch künstliche Intelligenz sind damit eine automatische Objekterkennung und Bildanalysen möglich. Das System kann so etwa erkennen, ob Schrauben und Dübel korrekt zusammengesetzt wurden. Ist das nicht der Fall, wird das Personal während der Montagetätigkeit unmittelbar über den Fehler informiert. Um das zu ermöglichen, wurden über vier Monate die Daten von Schrauben und Dübeln sowie deren korrekte Verschraubung gesammelt. Im Anschluss erfolgte die automatische Erkennung über das Anlernen eines neuronalen Netzes. Nun leuchten auf einem Bildschirm zwei grüne Haken auf, wenn der Montageprozess fehlerfrei abgeschlossen wurde. Damit wird die Belegschaft entlastet, die Produktqualität erhöht und die Zahl der Reklamationsfälle gesenkt.

Seiten: 1 2Auf einer Seite lesen

Bundesministerium für
www.bmwi.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige