Schwache KI, starker Effekt

Resiliente Lieferkette durch Prognosen

Unvorhergesehene Ereignisse können die Lieferkette beeinträchtigen oder sie sogar lahmlegen. Da regionale bis globale Entwicklungen darauf hindeuten, dass die Zahl meist unliebsamer Überraschungen eher zunehmen dürfte, steigt auch die Bedeutung der Resilienz einer Lieferkette. Diese Widerstandsfähigkeit lässt sich mit künstlicher Intelligenz stärken.

Überwachtes Lernen

Solche Prognose lassen sich mithilfe künstlicher Intelligenz hervorragend erstellen. Die Nachfrageunsicherheiten können von sehr vielen Variablen abhängen, die bereits aus der Vergangenheit bekannt sind. Das Wetter, die Jahreszeiten oder wirtschaftliche Trends können dabei eine Rolle spielen. Weiter kennen Unternehmen häufig Zusammenhänge zwischen der Nachfrage und diesen Einflussgrößen. Es existiert also eine Historie für Bedarfe und die Ausprägung der Variablen. Nun lässt sich im Rahmen einer KI durch überwachtes Lernen auch der Zusammenhang zwischen Eingabegrößen und Ergebnisgrößen lernen.

Ergebnisgüte validiert

Schließlich können die Spezialisten im sogenannten Backtest die Historie über einen Zeitraum von fünf Jahren betrachten. Daraus nehmen sie drei Jahre, um Zusammenhänge zu lernen und die nächsten zwei Jahre, um das erlernte Ergebnis zu testen. Die Länge dieses Zeitraums und damit auch der Umfang der Datenbasis hängen aber stark vom Prognosezeitraum ab. Für die Prognose von einer Woche reicht auch eine Bedarfshistorie von einem Jahr. So entsteht ein Prognosemodell, mit dem sich – basierend auf den Variablen – bei fortlaufender Aktualisierung Prognosen für die Zukunft ableiten lassen. Bedarfsprognosen können dann etwa kundenseitige Nachfrageunsicherheiten reduzieren. Algorithmen aus der KI stärken also auf vielfältige Weise die Resilienz einer Lieferkette. Die Prognosemodelle sind grundsätzlich flexibel konfigurierbar. Die Gewichtung der Historie lässt sich beispielsweise verändern und das Modell neu trainieren.

Zunächst die Datenbasis

Bei dem IT-Dienstleister Cosmo Consult Data & Analytics beginnen Kundenprojekt grundsätzlich damit, die Menge und Qualität der Daten zu bewerten, die der Anwender zur Verfügung stellen kann. Häufig stehen nicht alle Daten zur Verfügung, die zur Problemlösung erfoderlich sind. Dann stehen die IT-Spezialisten vor der häufig schwierigen Aufgabe, eine Lösung zu finden, die fehlende Informationen abzuleiten. Typischerweise ist das ein Problem bei Artikeln, die gerade ins Sortiment aufgenommen wurden und über die es noch keine Nachfragehistorie geben kann. Eine Möglichkeit besteht darin, ähnliche, seit längerem vorhandene Artikel zu betrachten und ihre Historie nach einigen Wochen mit dem Verkaufsverhalten der neuen Artikel zu vergleichen. Je länger dieser Vergleich läuft und je öfter die Berechnungen aktualisiert werden, desto genauer wird die Prognose. Neben der Datenvalidierung werden mit dem Anwender auch seine Anforderungen besprochen und ihm werden Potenziale aufgezeigt. Außerdem wird der Informationsbedarf wie Lieferanteninformationen, Lieferantenkonditionen, Lieferzeiten und ähnliches definiert.

Seiten: 1 2 3Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Mitsubishi Electric Corporation, Japan
Bild: Mitsubishi Electric Corporation, Japan
KI-gestütztes Analysetool für moderne Produktionslinien

KI-gestütztes Analysetool für moderne Produktionslinien

Das Data-Science-Tool Melsoft MaiLab von Mitsubishi soll Unternehmen bei der Digitalisierung ihrer Fertigung und unterstützen und so deren Produktivität steigern. Die neue Lösung ist eine intuitive, bedienerzentrierte Plattform, die KI nutzt, um Abläufe automatisch zu verbessern. Sei es Abfallvermeidung durch geringere Ausschussmengen, weniger Stillstandszeiten durch vorbeugende Wartung oder Senkung des Energieverbrauchs durch Prozessoptimierung.

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.