Vorausschauend gewartet, besser gekühlt

Machine Learning in der Praxis:

Vorausschauend gewartet,
besser gekühlt

Bild: Xervon Instandhaltung GmbH

Ziel der vorausschauenden Wartung – oder Predictive Maintenance – ist es, die Ausfälle von Maschinen und Anlagen zu minimieren. Neue Technologien wie Machine Learning, smarte Sensoren und der digitale Zwilling ebnen dafür den Weg. Dieser Thematik widmet sich auch ein gemeinsames Projekt des Industriedienstleisters Xervon Instandhaltung GmbH und des SAP-Beratungshauses Itelligence.


Die regelmäßige Überprüfung von Anlagen und Maschinen gehört zu den Routineabläufen in Unternehmen. Dabei können Wartung und Instandhaltung auf unterschiedlich hohen Niveaus durchgeführt werden. Auf Level 1, der vorbeugenden Instandhaltung wird ausschließlich visuell inspiziert, auf Level 2 und 3, der zustandsbasierten Instandhaltung, werden für das sogenannte Condition Monitoring bereits Messinstrumente eingesetzt. Mit Hilfe von Machine Learning können die Digitalisierung, das Internet of Things (IoT) und Big Data ermöglichen, das Konzept der vorausschauenden Wartung auf eine noch effektivere Ebene zu heben. Basis dieser Verbesserung ist das Generieren und Verarbeiten relevanter Daten. Dafür messen intelligente und bedarfsgerechte Sensoren an den Anlagen vorab festgelegte Parameter und ermöglichen so eine automatisierte, permanente Überprüfung.

Predictive Maintenance in der Praxis

In einem gemeinsamen Projekt erproben Xervon Instandhaltung, eine Tochtergesellschaft von Remondis Maintenance & Services, und das SAP-Beratungshaus Itelligence Predictive-Maintenance-Lösungen in der Praxis. Die Xervon Instandhaltung betreibt unter anderem Kühltürme, die Kühlwasser in der richtigen Menge und in der vereinbarten Temperatur für die Produktion zur Verfügung stellen. Um das sicherzustellen, muss ein verzweigtes Netz von Rohrleitungen und mehreren Pumpen sowie Ventilatoren ständig überwacht und regelmäßig gewartet werden.

Sensoren geben Aufschluss

In der traditionellen Instandhaltung überprüfen üblicherweise Service-Techniker per Fernüberwachung in regelmäßigen Zeitabschnitten, ob sich Unregelmäßigkeiten an den Pumpen feststellen lassen. Das ist personal- und zeitintensiv. Da es bei der angebotenen Dienstleistung vor allem um die Betriebssicherung der Kühltürme sowie die kontinuierliche Überwachung des Betriebszustandes der Anlagen – also der zustandsorientierten Instandhaltung bzw. dem Condition Monitoring – geht, wurden vor allem die Pumpen mit Sensoren ausgestattet. Diese liefern Daten zu Parametern wie der Durchflussmenge, der Temperatur oder der Energieaufnahme. Besonders wichtig für das Condition Monitoring sind zudem die an den Pumpen angebrachten Vibrationssensoren. Die durch sie erfassten Schwingungen werden auf charakteristische Frequenzen untersucht, über deren Analyse sich Fehler- und Verschleißbilder erstellen lassen, sodass sich beispielsweise unterschiedliche Betriebszustände analysieren lassen.

Seiten: 1 2Auf einer Seite lesen

itelligence AG
www.itelligence.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige