Künstliche Intelligenz und Maschinelles Lernen für die Produktion

Wichtiges Kennzeichen von Industrie 4.0 ist die durchgängige Vernetzung und Durchdringung aller Komponenten der Fabrik sowie kompletter Wertschöpfungsketten mit Sensorik, eingebetteten Systemen und Kommunikationstechnik. Dadurch fallen von der Planung der zu fertigenden Produkte und Produktionsmittel über ihre Herstellung bis zur Nutzung der Produkte große Mengen an Daten an, die meist maschinell erzeugt werden. Diese Daten sind Grundlage für moderne und mächtige Analyse- und Auswerteverfahren, die heute als ‚Künstliche Intelligenz‘ (KI) bezeichnet werden.

Entweder stammen die Daten aus den Maschinensteuerungen, aus der existierenden Sensorik der Maschine und/oder aus nachgerüsteten intelligenten Sensoren. Jeder Anwendungsfall erfordert seine spezifischen Daten. Also ist festzulegen, welche Granularität der Daten für eine bestimmte Aufgabe erforderlich ist, wie Daten aus verschiedenen Quellen passgenau zusammengeführt werden können und in welchem Format die Daten übertragen und gespeichert werden. Zu berücksichtigen sind außerdem die Themen Datensicherheit und Datenschutz, denn mehr Vernetzung bedeutet höhere Anfälligkeit gegen Cyberangriffe.

In Produktionsprozessen wird Maschinelles Lernen eingesetzt, um ganz allgemein „Wissen“ aus „Erfahrung“ zu erzeugen – Lernalgorithmen entwickeln aus möglichst repräsentativen Beispieldaten ein komplexes Modell. Dieses Modell kann anschließend auf neue und unbekannte Daten derselben Art angewendet werden. Immer, wenn Prozesse zu kompliziert sind, um sie analytisch zu beschreiben, aber genügend viele Beispieldaten verfügbar sind, z.B. Sensordaten oder Bilder, bietet sich Maschinelles Lernen an. Die Modelle werden mit dem Datenstrom aus dem laufenden Betrieb abgeglichen und erlauben letztlich Vorhersagen oder Empfehlungen und Entscheidungen.

Wo werden zukünftig die anfallenden Daten verarbeitet oder die Modelle gelernt? Aktuell zeichnet sich ab, dass zukünftig „Edge-Rechenzentren“ diese Aufgabe übernehmen. Unter Edge-Computing versteht man, Rechenleistung, Software-Anwendungen, Datenverarbeitung oder Dienste unmittelbar an die logische Randstelle eines Netzwerks zu verlagern, z.B. einer Linie oder einer kompletten Fabrik. Edge-Rechenzentren, untereinander verbunden zu einer Cloud-Infrastruktur, sind damit skalierbar und bieten auch mittelständischen Unternehmen die Möglichkeiten, Cloud-Technologien zu nutzen, ohne in eine eigene Infrastruktur investieren zu müssen.

Fraunhofer-Institut für Optronik, Systemtechnik
www.iitb.fraunhofer.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige