Selbstlernende Algorithmen zur Maschinensteuerung

Mit maschinellem Lernen vorherzusagen, dass ein wichtiges Teil einer Fertigungsanlage ausfallgefährdet ist oder unerwünschte Abweichungen aufgetreten sind - solche Anwendungen auf Basis von KI gibt es bereits. Dafür lassen sich selbstlernende Algorithmen ganz nah an der Maschine integrieren.

Bild: Omron Europe B.V.

Um Investitionsausgaben zu maximieren, ist operative Exzellenz erforderlich. Gleichzeitig stehen die Hersteller jedoch vor der Herausforderung, sich von traditionellen High-Volume-Low-Mix-Produktionsprozessen zu komplexeren High-Mix-Low-Volume-Produktionsprozessen zu bewegen, wobei die Nachfrage direkt mit der Produktion verbunden ist. Ein vergleichsweise neuer Baustein für operative Exzellenz ist die Implementierung von ‚KI at the Edge‘, also auf Maschinenebene. Grundlagen dafür sind eine flexible und autonome Produktionsunterstützung sowie IoT-Automatisierungslösungen von der Datenerfassung bis zur Produktion für eine nahtlose Integration von IT- und OT-Welten.

Was machen die Algorithmen?

Vereinfacht gesprochen wurde für die maschinennahe Integration von KI-Technologie ein Auswertungsansatz so erweitert, dass er sich innerhalb gegebener Rahmenbedingen selbst optimiert. Da dies vom Steuerungshersteller Omron in eine echtzeitfähige Form programmiert wurde, kann von einem selbstlernenden maschinennahen Algorithmus gesprochen werden. Theoretisch lassen sich Auswertungen auch nach der Datenerfassung, dem sogenannten Post-Event, mithilfe einer Software durchführen. Jedoch sind dann auf dieser Ebene der Produktion das defekte Erzeugniss oder der nahende Maschinenstillstand schon passiert. Eine Auswertung auf Maschinenebene in Echtzeit befähigt die Maschine, sofort auf Anomalien zu reagieren.

Edge und Cloud in der Fertigung

Doch was bedeutet eigentlich ‚KI at the Edge‘? Das auf kleinen Daten basierende maschinelle Lernen lässt sich in diesem Zusammenhang als spinale KI bezeichnen. Auf dieser Ebene werden Produktionslinien und Geräte mit Echtzeitsensoren überwacht und die Daten werden mit hoher Geschwindigkeit gesammelt und verarbeitet, um Anomalien schnell zu erkennen. Die Verarbeitung großer Datenmengen in der Cloud kann als zerebrale KI bezeichnet werden. Diese erfordert offene und sichere Standards wie das MQTT-Protokoll und den Kommunikationsstandard OPC UA für die Umwandlung von Maschinen- und Anlagendaten in Informationen. Während sich die Cloud am besten für Big-Data-Verarbeitung und Langzeitanalysen eignet, ist der ‚KI at the Edge-‚Ansatz eher für Echtzeitanwendungen geeignet. Dieser Ansatz bietet schnellere Reaktionszeiten, um die Datenanalyse auf Produktionsebene nutzen zu können, etwa zur Echtzeit-Optimierung einer Maschine.

Seiten: 1 2Auf einer Seite lesen

industrial.omron.eu

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige