Mechanismus für gute Ergebnisse

Wie können wir der KI vertrauen?

Unternehmen setzen zunehmend auf KI oder planen, dies künftig zu tun. Doch die große Euphorie bleibt in der Industrie aus guten Gründen noch aus. Zum einen fehlt die kritische Masse an Einsatzszenarien, weswegen Unsicherheit besteht, welche Handlungsfelder nachhaltige Erfolge versprechen. Zum anderen ist die Frage der Zuverlässigkeit zu klären, also wie valide KI-generierte Ergebnisse wirklich sind. Im Folgenden geht es um die Mechanismen, die gute Ergebnisse sicherstellen helfen.

Alarmsystem für Online-Banking (siehe ganz links)
Alarmsystem für Online-Banking (siehe ganz links)Bild: U.Coester

Bevor KI eine breite Akzeptanz in Unternehmen und Gesellschaft erfährt, müssen einige Herausforderungen gelöst werden. Doch letztendlich wird die Vertrauenswürdigkeit der KI-Technologie als Schlüssel für deren Erfolg gesehen. Aber wie kann diese aufgebaut werden? Ausgehend von der Definition, dass Vertrauen als die subjektive Überzeugung von der Richtigkeit einer Aussage und von Handlungen zu verstehen ist, kann ein KI-System generell als vertrauenswürdig eingestuft werden, wenn es sich für den vorgesehenen Zweck immer wie erwartet verhält. Daraus lässt sich folgern, dass Vertrauenswürdigkeit nachweisbar ist. In Bezug auf KI sind somit grundlegend folgende Faktoren relevant, die im Weiteren erläutert werden:

  • Die Eingangsdaten der KI müssen eine hohe Qualität für den Anwendungsfall aufweisen.
  • Die IT-Anwendung und das KI-System sind von KI- und Anwendungsexperten konzipiert sowie manipulationssicher und vertrauenswürdig umgesetzt.
  • Ergebnisse nachzuvollziehen wird ermöglicht.
  • Bei der Entwicklung und Anwendung werden jeweils ethische Grundsätze eingehalten.

Qualität der Eingangsdaten

Grundsätzlich basiert die Entwicklung und im Weiteren der Einsatz von KI-basierten Anwendungen auf Daten – etwa für das Trainieren des KI-Algorithmus sowie auch für dessen Nutzung. Unter dieser Prämisse ist eine differenzierte Analyse der Daten – bezüglich ihres Werts respektive ihrer Aussagekraft im Sinne der Aufgabenstellung – beider Kategorien ein essentieller erster Schritt zur Sicherstellung der Vertrauenswürdigkeit von KI-basierten Anwendungen. Denn aufgrund ihrer hohen Relevanz entscheidet deren Auswahl und Qualität maßgeblich über das Ergebnis. Aus diesem Grund sollte es obligatorisch sein, entsprechend Positionen im Unternehmen zu konstituieren, die für das Modell der Datengewinnung und -nutzung zuständig sowie für die Kontrolle der ordnungsgemäßen Umsetzung verantwortlich sind. Gemäß vorgegebener Kriterien lässt sich der Standard der Datenqualität für KI-Systeme sowohl etablieren als auch validieren. Im Einzelnen sind dabei unter anderem Vollständigkeit, Repräsentativität, Nachvollziehbarkeit, Aktualität und Korrektheit zu berücksichtigen.

Vollständigkeit der Daten

Die Grundvoraussetzung für Vollständigkeit ist, dass ein Datensatz alle notwendigen Attribute und Inhalte enthält. Kann die Vollständigkeit der darin inkludierten Daten nicht garantiert werden, entsteht daraus potentiell das Problem von irreführenden Tendenzen, was letztendlich zu falschen oder diskriminierenden Ergebnissen führt. Dieses Phänomen tritt unter anderem bei Predictive Policing-Systemen auf: Wenn beispielsweise die Datenerhebung zu Kriminalitätsdelikten von vorneherein massiv in definierten Stadtvierteln stattfindet und dies im Kontext mit bestimmten Merkmalen wie Herkunft und Alter geschieht, ergibt sich daraus im Laufe der Zeit, dass dort bestimmte Bevölkerungsgruppen stärker überwacht und durch die häufiger durchgeführten Kontrollen letztendlich per se kriminalisiert werden. Der (vermeintliche) Tatbestand kann jedoch unter Umständen lediglich darauf basieren, dass entsprechende Vergleichswerte unter Berücksichtigung der gleichen Merkmalen aus anderen Stadtvierteln nicht im adäquaten Maße erhoben wurden. Vollständigkeit bedeutet somit keinesfalls, wahllos möglichst viele Daten zu erfassen – entscheidend ist die Auswahl.

Repräsentativität der Daten

Die Repräsentativität zeichnet sich dadurch aus, dass die Daten eine tatsächliche Grundgesamtheit und somit entsprechend die Realität abbilden, die stellvertretend im Sinne der Aufgabenstellung ist. Sind die Daten nicht repräsentativ, hat dies zur Folge, dass daraus ein Bias resultiert. Dieses Phänomen tritt beispielsweise im Recruiting von Führungskräften auf, wenn hier größtenteils Daten aus der Vergangenheit berücksichtigt werden und in dieser Zeit überwiegend Männer in Führungspositionen waren. Mit der Konsequenz, dass die KI-basierte Anwendung daraus folgern müsste, dass Männer für diese Positionen qualifizierter seien. Ergebnisse wie diese zeigen, dass durch KI-Systeme nicht zwangsläufig Objektivität erreichbar ist.

Manipulation von KI-Systemen
Manipulation von KI-SystemenBild: Prof. Dr. Norbert Pohlmann

Seiten: 1 2 3 4Auf einer Seite lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige